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Abstract - As an alternative t o  the hypercube, the 
binary d e  Bruijn BdB network is recently receiving 

rithmic diameter, fault-tolerance, and simple routing 
but also requires fewer links than the hypercube for the 
same network size. Additionally, a major advantage 
of the BdB network is a constant node degree: the 
number of edges per node is independent of the net- 
work size. This makes it very desirable for large-scale 
parallel systems. However, due t o  its asymmetrical na- 
ture and global connectivity at is posing a major chal- 
lenge for VLSI technology. Optics, owing t o  its three- 
dimensional and global connectivity nature seems to be 
very suitable for implementing BdB networks. In this 
paper, we present an implementation methodology for 
optical BdB networks. The distinctive feature of the 
proposed implementation methodology is partitionabil- 
ity of the network into a f e w  primitive operations that 
can be eficiently implemented. We further show feasi- 
bility of the presented design methodology by  proposing 
an optical implementation of the BdB network. 

much attention. h L  he dB not only provides a loga- 

1 Introduction 
The recent quest for massively parallel comput- 

ing systems is placing a major emphasis on scalable 
networks with small diameters and bounded node 
degrees[l]. As an alternative to the hypercube and 
the mesh topologies, the de Bruijn topology[2, 31 has 
recently been receiving much attention. Its proper- 
ties and a plications have been studied by several 
researcher&, 5, 6, 7, 81. Its topological properties 
show that the de Bruijn network is a good candidate 
for interconnection networks of the next generation of 
parallel computers after the hypercube. The de Bruljn 
network behaves like the hypercube, and retains most 
of the same desired properties (logarithmic diameter, 
fault-tolerance, and simple routing). The de Bruijn 
network possesses two major additional advantages. 
The first advantage is that the de Bruijn network re- 
quires fewer physical links than the hypercube for the 

]This research was supported by an NSF grant No. 
MIP 9310082. 

same network size (the same number of nodes). For ex- 
ample, to construct a network of 1,024 nodes, the hy- 
percube network requires 5,120 physical links whereas 
the de Bruijn network requires only 2,048 links. The 
second major property of the de Bruijn network is that 
the node degree is constant, whereas in the hypercube 
the node degree varies as loga N for an N-node net- 
work. For a binary de Bruijn network, the node degree 
is always four regardless of the network size. It should 
be noted that the node degree of the mesh network 
is also four independent of the network size, but the 
binary de Bruijn network has much smaller diameter 
than the mesh for the same network size. 

Recent work has also shown that most of the al- 
gorithms proposed for the hypercube network can be 
easily transposed onto the de Bruijn network without 
any increase in the complexity of the algorithms[5]. 
This coupled with a constant node degree, makes the 
de Bruijin network a highly desirable architecture for 
future large-scale systems. 

Despite its many attractive properties, the de 
Bruijn network is considerably less known compared 
to  the hypercube network because it is much less 
amenable to  VLSI implementations. The VLSI im- 
plementation of the de Bruijn network is nontriv- 
ial since the network is neither fully symmetric nor 
modular[5, 61 as is the case with other popular net- 
works. Additionally, the de Bruijn network requires 
many more global connections than the hypercube 
and the mesh, and such global connections make its 
VLSI implementation more difficult. Currently, the 
de Bruijn topology is used in a couple of parallel ma- 
chines: The Triton/l computer developed at the Uni- 
versity of Karlsruhe[S], and the de Bruijn VLSI net- 
work with 8192 nodes being built by NASA’s Galileo 
project[6]. 

Optics, owing to its three-dimensional (3-D) nature, 
global connectivity property, and its flexible signal 
routing capability, seems to be very suitable for re- 
alizing non-symmetric global connections[lO, 111. In 
this paper, we propose an implementation methodol- 
ogy for the optical de Bruijn network. The proposed 
methodology provides a partitionable optical imple- 
mentation; i.e., the de Bruijn network is first decom- 
posed into a few primitive operations each of which 
can be efficiently implemented, and then, these oper- 
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ations are combined together to realize the de Bruijn 
network. An optical implementation of the de Bruijn 
network is proposed to show feasibility of the design 
methodology. It is shown that a BdB network with 
4096 nodes can be integrated in 4cm2 area with the 
total power efficiency being as high as 48%. We will 
provide the detailed analysis that led to these figures 
at the conference. 

2 Definition and Properties of Binary 
de Bruijn Networks 

A binary de Bruijn network with 2" nodes is de- 
noted by n-BdB. Let node i (0 5 i < 2") in the n- 
BdB be represented by an n-bit binary number, say i 
- an-lan-2.  * .UO. Node i is connected to four neigh- 
boring nodes (il, iz, i3, and i4) as follows. 
- 

il = Un-z(en-3 * .  .UlUoUn-l (1) 
(2) iz = u ~ - ~ c x , , - ~ . .  ~a~aoa,,-~ 

i3 = a o a n - l a n - ~ ~  aza1 (3) 
(4) i4 = a o a " - l a " - ~ ~ ~  '(12U1 

- 

- 

Node il connection from node i in Eq. 1 is obtained 
by rotating node i address to the left by one bit po- 
sition, which is equivalent to the perfect shuffle (PS) 
operation. Node iz connection from node i in Eq. 2 
is obtained by rotating node i address to the left and 
then complementing the least significant bit which is 
equivalent to a perfect shuffle-exchange (PS-E) oper- 
ation. Similarly, node i3 connection from node i in 
Eq. 3 is obtained by a right rotation operation which 
is equivalent to the inverse perfect shuffle (IPS) oper- 
ation, and node i4 connection from node i is obtained 
by a right rotation and complement operation or an 
inverse perfect shuffle-exchange (IPS-E) operation. In 
Fig. 1 a four-BdB network is shown. It should be 
noted that the BdB network is not modular (i.e., we 
cannot build a four-BdB network by simply connect- 
ing two three-BdB networks as is the case with the 
hypercube network), not fully symmetric as the net- 
work size grows, and the connectivity is not localized 
(as is the case with the mesh network). 

A node in the BdB network has four neighbors as 
defined in Eqs. 1-4. Thus, the node degree of an n- 
BdB network is always 4 which is constant and inde- 
pendent of the network size. In actual implementa- 
tion, the node degree means the number of fan-ins or 
fan-outs. Thus, the fact that the node degree is con- 
stant greatly eases the design of large-scale systems 
using the BdB network compared to the hypercube- 
based one whose node degree grows logarithmically 
with respect to the network size. As can be seen from 
Eqs. 1-4, a node in the n-BdB network can be reached 
from any other node in at most n hops. Thus, the di- 
ameter of the n-BdB network with 2" nodes is n (the 
diameter increases logarithmically with respect to the 
total number of nodes in the network). A detailed 
comparison of the n-BdB network with the two most 
popular networks, the binary n-cube and the mesh 
networks, is summarized in Table 1. 

3 Design Methodology for Optical de 
Bruijn Networks 

In this section, we propose a design methodology 
for the optical implementation of the BdB networks. 
The presented methodology provides a partitionable 
optical implementation; the BdB network is decom- 
posed into a few primitive operations that can be ef- 
ficiently implemented and then, these operations are 
combined together to realize the BdB network. The 
design methodology assumes a 3-D optical intercon- 
nect model which consists of three parts: a two - 
dimensional (2-D) source array, a 2-D detector array, 
and an optical interconnect module [12]. The optical 
interconnect module receives an image from the source 
array and generates the required optical links to the 
detector array. 
3.1 Decomposition of the de Bruijn Net- 

work into Primitive Optical Opera- 
tions 

As shown in Eqs. 1-4, a BdB network can be de- 
composed into four operations: a PS operation, a PS- 
E operation, an IPS operation, and an IPS-E opera- 
tion. Since the model for the 3-D optical interconnects 
takes an image of the 2-D source array and generates 
images on the 2-D detector array, these operations and 
their corresponding shuffle operations should be done 
on 2-D arrays. There are two kinds of 2-D perfect 
shuffles[l3, 14, 151: the 2-D separable perfect shuffle 
(SPS) and the 2-D folded perfect shuffle (FPS). In the 
2-D SPS, the rows and the columns are shuffled in- 
dependently, whereas in the 2-D FPS the rows and 
columns of the input are obtained by folding a 1-D in- 
put array. The mathematical relationship between the 
2-D SPS and the 2-D FPS has been shown in Ref. [16]. 
In this subsection, we first summarize the mathemati- 
cal relationship between the 2-D SPS and the 2-D FPS 
derived in Ref. [16], and then extend it to derive the 
relationship between the 2-D separable inverse perfect 
shuffle (SIPS) and the 2-D folded inverse perfect shuf- 
fle (FIPS). Then we identify the most fundamental 
three operations required for the BdB network con- 
struction. 

Let us consider that N nodes ( N  = 2" and n 
is even) are arranged in a 2"12 x 2"12 array (or 2- 
D plane). A binary address of a node can be rep- 
resented by (an-lan-2 - . .  an/2 ,  ~ ~ 1 2 - 1  . ' .  also), 
where an-1an-2 - .  - an /2  represents the row index and 
an/2-1 ala0 represents the column index. Note that 
the row index and the column index are separated by 
a comma. 
A 2-D FPS (denoted as f2-D FPS) can be expressed as: 

fi-D FPS : 
(an- an-2 ***an/21 an/i - l  ***also) = 
(an-i.**an/2-1, an/2-2***alaoan-1) (5) 

A 2-D SPS (denoted as f2-D sps) can be expressed as: 

f2-D SPS : 
(an-lan-z-..an/Z, an/2-1 *..also) = 
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(an-2 . * * a n / i a n - l ,  an/2-2..*alaoan/2-1) (6) 

As can be seen in Eqs. 5 and 6, a 2-D FPS is obtained 
by rotating the binary address as a whole to the left by 
one bit position, and a 2-D SPS is obtained by rotating 
to the left by one bit position the row address and the 
column address separately. 

Relationship Between 2-D Folded Perfect Shuffle(FPS) 
> I  _ _  

and 2-0  Separable Perfect ShuDe(SPS) 
From Eas. 5 and 6. it can be seen that the 2-D FPS 
is equivhent to ( i j  exchanging most significant bits 
(MSBs) of the row address and the column address, 
and then (ii) performing a 2-D SPS as follows[l6]. 

(i) Exchange MSBs in 
(an-lan-2.'.an/i,an/2-1 **.also) = 
(an/2-1ah-2...an/2,Qn-l...Ql~o) (7) 

(ii)f2-D SPS : 
(an/2-lan-2"'an/2,an-l .**a1ao) = 
(an-2 * * *an/2-1, an/2-2 * * *alaOan-l) (8) 

If we divide the addresses of nodes placed in the source 
array into four quadrants; QO, Q1, Q2, and Q3, the 
exchange of MSBs is equivalent to the exchange of Q1 
and Q3 as depicted in Fig. 2.a. 

Relationship Between 2-D Folded Perfect Shufle 
-Exchange (FPS-E) and 2-0  Separable Perfect 
Shufle (SPS) 
Now we derive the 2-D FPS-E (denoted as f 2 - ~  FPS-E) 
from the 2-D SPS. We define a 2-D FPS-E as: 

f i - D  FPS-E : 
(an-lan-2*..an/2, an/2-1 * * * ~ I Q )  = 
(an- i  ".an/i-l,an/i-2".alagijin-l) (9) 

which is equivalent to (1 complementing the MSB 
of the row address (un-l 1 , (2) exchanging MSBs of 
the row address and the column address, and (3) per- 
forming a 2-D SPS on the resulting address. Since 
the complement of the MSB in the row address corre- 
sponds to the exchange of quadrants QO and Q3, and 
the exchange of Q1 and Q2, steps (1) and (2) result 
in clockwise rotation of quadrants by one position as 
explained in Fig. 2.b. 

Relationshap Between 2-D Folded Inverse Perfect 
ShuJgle (FIPS) and 2-0  Separable Inverse 
Perfect Shufle (SIPS) 
We derive the mathematical relationshir, between the 

Similarly, we denote a 2-D SIPS as f2.D SIPS and define 
it as: 

f2-D SIPS: 

(an-lan-2-..an/2,an/z-l .**also) = 
(an/aan-~ ..'an/2+l,a0,an/i-l'..ul) (11) 

Eqs. 10 and 11 show that the 2-D FIPS is equivalent 
to (1) performin 2-D SIPS, and (2) exchanging most 
significant bits tMSBs) in the row address and the 
column address of the resulting node address. The 
latter is equivalent to the exchange of quadrants Q1 
and Q3. 

Relationship Between 2-D Folded Inverse Perfect 
Shufle-Exchange (FIPS-E) and 2-D Separable 
Inverse Perfect ShufPe (SIPS) 
Finally, we derive the relationship between the 2-D 
FIPS-E and the 2-D SIPS. A 2-D FIPS-E (denoted as 
 fa^ FIPS-E) is defined as: 

fi-D FIPS-E 

(an-lan-2. * * an / i ,  ~ n / 2 - 1 *  *also) = 
(Z0an-1 * * ' a n / i + ~ , a n / i  . * * a 1 )  (12) 

which is equivalent to (1) performing the 2-D SIPS, (2) 
exchanging most significant bits (MSBs) in the row in- 
dex and the column index, and (3) complementing the 
MSB in the row index of the resulting source array. As 
shown in Fig. 2.b, steps (2) and (3) correspond to the 
clockwise rotation of the quadrants by one position. 

Figure 3 is a decomposition tree of the BdB net- 
work which summarizes the relationships derived so 
far. The optical BdB network based on the 3-D op- 
tical interconnect model consists 6f four operations; 
2D FPS, 2D FPS-E, 2D FIPS, and 2D FIPS-E oper- 
ations. The 2D FPS operation illustrated as the left- 
most branch of the decomposition tree is further di- 
vided into three operations in sequence; QE followed 
by columnwise 1D PS, and followed by rowwise 1D PS 
operations. Similarly, 2D FPS-E, 2D FIPS, and 2D 
FIPS-E operations are further divided into three op- 
erations as shown in Fig. 3. It should be noted that the 
IPS operation can be obtained from the PS operation 
by swapping inputs and outputs or vice versa. Thus, 
we can conclude that the most fundamental three op- 
erations are identified to be QE, QR, and PS (or IPS) 
for constructing the BdB network. 
3.2 Construction of the Binary de Bruijn 

Network Using the Primitive Opera- 
tions 

The construction of the BdB network using funda- 
mental operations is the reverse process of the decom- 
position as shown in Fig. 4. At stage 1, four images 
(fanouts) of the N x N input arrary are generated. 
Four images undergo FPS, FPS-E, FIPS, FIPS-E op- 
erations as indicated by branches l), 2), 3), and 4) re- 
spectively. For example, &E, columnwise 1D PS, and 
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rowwise 1D PS operations are performed in sequence 
to accomplish FPS operation. Stage 5 combines four 
images to give the binary de Bruijn connection pattern 
between the input array and the output array. 

4 Feasibility Study for Optical Imple- 
mentations 

In this section, we apply the presented design 
methodology to the implementation of the optical BdB 
network and then we analyze the proposed implemen- 
tation to show feasibility of the design methodology. 
An optical implementation of each fundamental op- 
eration is first presented and then, the integration of 
these fundamental operations is shown to construct 
the optical BdB network. For cascadability, we re- 
strict beam angles entering and leaving each module 
(an implementation of an operation) to be normal to 
the surface. 
4.1 Implementation of Fundamental Op- 

Imvlementation o f  Quadrant Exchanae Oberation 
tical Operations 

Figure 5 shows the geometry for the implementation 
of the QE operation. Deflecting optical components, 
e.g., using diffractive gratings or volume holograms, 
are fabricated both on the top and on the bottom of 
the substrate. Beams incident on quadrants QO and 
Q2 pass through directly, whereas beams on quadrant 
Q1 get deflected toward Q3, and beams on Q3 get de- 
flected toward Q1. Thus, the net effect of the QE oper- 
ation becomes the swapping of quadrants Q1 and Q3. 
The deflection angle requirement can be calculated us- 
ing Fig. 5.b. Since Q1 and Q3 are swapped, the beam 
deflection occurs along line XX - YY and the an- 
gle (8) is equal to tanq1 y where t is thickness of 
the substrate and L is the size of the input array in 
a single dimension. Suppose that we use diffractive 
gratings for beam deflection. From the grating equa- 
tion, we can derive the grating period ( p )  required for 
the QE operation on the given light wavelength (A) as 
follows: 

A 
P =  

sin(t an-' 9) 
Note that we can also use two copies of an identical 
volume hologram in implementing the QE operation 
since holograms on the Q1 facet and on the Q3 facet 
can have the same structure but with different orien- 
tations. 

Implementation of Quadrant Rotation Operation 
Figure 6 illustrates an implementation of the QR op- 
eration. We construct four volume holograms or grat- 
ings on the facets of QO, Ql ,  Q2, and Q3 for the re- 
quired beam deflections. As shown in Fig. 6.b, the 
deflection angle (8) is equal to tan-' 6, where L is 
the one dimensional size of the input array and t is 
the thickness of the substrate. It should be noted 
that all four holograms will have identical structure 
but with different orientations. The hologram on QO 
deflects incident beams along +z direction, Q1 along 

-y direction, Q2 along -x direction, and Q3 along +y 
direction. 

Implementation of Perfect Shufle Operation 
Several implementations of permutation intercon- 
nects, including the PS operation, have been demon- 
strated so far using holo raphic optical elements [17, 
181, diffractive lenslets [l4, and refractive lenslets [20]. 
We can easily extend such methods to implement 1D 
rowwise (or columwise) PS operations. 

Figure 7 shows a rowwise (or columnwise) 1D PS 
implementation on 8 rows (or columns). Let d be the 
node size along a single dimension, t be the thick- 
ness of the substrate, and & be the deflected angle at 
node i. For a k-node l-D PS ( k  is a power of two), 
Bi = tan-' if i 5 k/2, or Si = tan-' kkQ& if 
i > k/2. As discussed earlier, these angular require- 
ments determine the period of the grating when we 
use diffrative gratings for the beam deflection. We 
should note that the l-D PS operation on k nodes 
requires k/2 distinct deflecting components since de- 
flection angles of the first k/2 nodes are symmetric to 
those of the remaining k / 2  nodes. Also note that an 
implementation of the l-D IPS operation can be easily 
achieved by swapping inputs and outputs of the l-D 
PS implementation in Fig. 7. 
4.2 Integration of Fundamental Opera- 

tions to Construct the Optical Binary 
de Bruijn Network 

As shown in Fig. 4, we need a 1 x 4 fanout element 
(a 4 x 1 fanin element as well) to construct the BdB 
network in addition to the implementations of funda- 
mental operations discussed so far. 

Implementation of 1 x 4 fanout/fanin elements 
Several implementations of fanout elements have been 
demonstrated [21,22,23,24]. We discuss geometry re- 
quirements of fanout elements to implement the BdB 
network. Figure 8 illustrates an implementation of 
the fanout element using a multiplexed volume holo- 
gram. Using the geometry given in Fig. 8.b, we can 
see that the deflection angle of each beam is equal to 
tan" &. It should be noted that a 4 x 1 fanin ele- 
ment can be achieved by swapping inputs and outputs 
of the 4 x 1 fanout element. 

Construction of the binary d e  Bruijn network 
The construction of the BdB network using imple- 
mentations of fundamental operations is the process 
of integration as shown in Fig. 4. Figure 9 shows a 
3-D view of the constructed BdB network using im- 
plementations of fundamental operations presented in 
Subsec. 4.1. Beams generated from an N x N laser 
diode array are first split into four images by the 1 x 4 
fanout element. Four images of the input array will 
undergo FPS, FPS-E, FIPS, and FIPS-E operations, 
respectively. Each operation is achieved by perform- 
ing a sequence of three fundamental operations. At 
the last stage a fanin element combines four images, 
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which result in the BdB connections between the input 
and output arrays. 

It should be noted that an index-matching fluid 
might be used between stages to ensure that the trav- 
eling light is not disturbed optically. Also note that we 
can use the space division multiplexing technique with 
multiple detectors per node to avoid fanin problem 
[25] at the last stage of the BdB network integration. 
An incoming signal distinction scheme, which encodes 
spatial positions of the sources at the nodes, would 
allow us to use an affordable number of detectors per 
node [26]. 

4.3 Analysis of the Proposed Implemen- 
tation 

Due to page limitations, we provide the detailed per- 
formance analysis of the proposed implementation at 
the conference. 

5 Conclusions 
The binary de Bruijn topology as an interconnec- 

tion network for parallel computers has been recently 
studied as an alternative to the hypercube-based or 
the mesh-based interconnection network. The bi- 
nary de Bruijn network has the nodedegree of a two- 
dimensional mesh, and the diameter of a hypercube. 
The de Bruijn network retains most of the desired 
properties of the hypercube network such as small di- 
ameter , easy message routing scheme, fault tolerance, 
and efficient mapping of many scientific and engineer- 
ing problems. In addition, the de Bruijn network has 
a constant node degree independent of the network 
size, which is very desirable in constructing large-scale 
systems. Unfortunately, the de Bruijn network is not 
fully symmetric and the connection patterns are not 
localized. This makes its VLSI implementation non- 
trivial, though not impossible. 

In this paper, we have proposed a design method- 
ology for the optical implementation of the de Bruijn 
network. The methodology first decomposes the bi- 
nary de Bruijn network into a few basic operations 
that can be efficiently implemented. And then, it in- 
tegrates these basic operations to construct the net- 
work. To show feasibility of the design methodol- 
ogy, we proposed an optical implementation of the 
binary de Bruijn network. It should be noted that 
the developed design methodology is good for bulk 
optics, holographic optics, or planar optics, etc., since 
the methodology does not assume any specific optical 
technologies. A 4096-node binary de Bruijn network 
was analyzed and found to be feasible for optical im- 
plementations. 
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Figure 1: A four-BdB network with 16 nodes. Node 
addresses are represented by binary numbers. 

Figure 2: In an n-bit (n even) address of a node, the 
most significant n/2 bits represent the row index and 
the rest represent the column index. An ‘x’ in the 
address represents don’t care bit. (a) The exchange of 
MSBs in the row index and the column index is equiv- 
alent to the exchange of quadrants Q1 and Q3, and (b) 
the complement of MSB in the row index (u, ,-~) (step 
l ) ,  followed by the exchange of MSBs in the row in- 
dex and the column index (step 2) results in clockwise 
rotation of quadrants by one position. 

, 
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Le ends. 
18 ' : one dimensional 
2D :two dimensional 
3D :three dimensional 
QE :quadrant exchaw 
QR : quadrant rotation 
PS : perfect shuffle 
IPS : inverse perfect shuffle 
FPS :folded perfect shuffle 
FIPS :folded inverse perfect shuffle 
FPS-E :folded perfect shuffle-exchange 
FIPS-E :folded inverse perfect thuffle-exchange 

Figure 3: Decomposition of the 3-D optical binary de 
Bruijn network. The most fundamental three opera- 
tions are identified to be 1-D perfect shuffle (or inverse 
perfect shuffle) , quadrant exchange, and quadrant ro- 
tation operations since the inverse perfect shuffle op- 
eration can be obtained from the perfect shuffle oper- 
ation by swapping inputs and outputs or vice versa. 

I N x  N Input 

e=ed=5 c o k "  PS column PS row IPS row IPS eta* 3 
.) & & & 

I row PS I I row PS I I OF I I QR Skw4 

Figure 4: Construction of the binary de Bruijn net- 
work usin fundamental operations. Fanouts indi- 
cated by 4 ,  2), 3), and 4) correspond to FPS, FPS- 
E, FIPS, and FIPS-E operations, respectively. These 
four operations are combined together to realize a bi- 
nary de Bruin network . 

Figure 5:  An optical implementation of the quadrant 
exchange (&E) operation. (a) a 3-D view, (b) a cross 
sectional view along line X X - W .  

Figure 6: An optical implementation of the quadrant 
rotation (QR) operation. (a) a 3-D view, (b) a side 
mew. 

j d i  
D4 i.g --.........-..---..... L .-......- ....... . .._.......... 

Figure 7: An optical implementation of the column- 
wise (or row-wise) 1D perfect shuffle (PS) operation 
on 8 columns (or 8 rows). If we swap inputs and out- 
puts, it can perform the column-wise (or row-wise) 1D 
inverse perfect shuffle operati on. 
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Figure 8: An optical implementation of the 1 4 
fanout element (or fanin element if we swap the 
input and the output). (a a 3-D view, (b) a cross 
sectional view along line X 2 - w .  

Figure 9: Integration of fundamental optical opera- 
tions to contruct the BdB network. Fanouts indicated 
by l), 2), 3), and 4) correspond to FPS, FPS-E, FIPS, 
and FIPS-E operations, respectively. 

Table 1: Characteristics of the binary n-cube, the two- 
dimensional mesh, and the n-BdB networks. It is as- 
sumed that the mesh network has wraparound con- 
nections in the rows and columns. The table shows 
that the n-BdB network is an attractive alternative 
over binary n-cube and the mesh network. 
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