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Abstract 

A n  important issue in  the design of interconnec- 
tion networks f o r  massively parallel computers is scal- 
ability. Size-scalability refers to  the property that 
the number of nodes in  the network can be increased 
with negligible effect on the existing configuration and 
generation-scalability implies that the communication 
capabilities of a network should be large enough to sup- 
pori the evolution of processing elements through gen- 
erations. The lack of size-scalability has limited the 
use of certain types of interconnection networks (e.g., 
hypercube) in  the area of massively parallel comput- 
ing. This paper presents a new optical interconnec- 
tion network, called an Optical Multi-Mesh Hypercube 
(OMMH), which is both size- and generation-scalable 
while combining positive features of both the hypercube 
(small diameter, high connectivity, symmetry, simple 
routing, and fault tolerance) and the mesh (constant 
node degree and scalability) networks. Also presented 
is a three-dimensional optical implementation method- 
ology of the OMMH network. 

1 Introduction 

The quest for Teraflops (lo1, floating point op- 
erations per second) supercomputers fueled by the 
launching of the High Performance Computing and 
Communication Program is putting major emphasis 
on exploiting massive parallelism with greater than 
one thousand processing elements (PES) networked to 
form massively parallel computers(MPCs)[l, 21. Sev- 
eral companies and universities have announced MPC 
projects. An important issue in the design of MPCs 
is scalability. The term scalability has several mean- 
ings. In the light of algorithms] a scalable computer 
should be able to perform well as the problem size 
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increases, which is called problem scalability. In the 
light of architecture, scalability has two aspects; size 
and generation. A size-scalable computer is designed 
to have a scaling range from a small to large num- 
ber of resource components. Linearly increased per- 
formance is expected as system size grows. As impor- 
tant as size-scalability is generation-scalability which 
is the adaptability of the architecture to the rapid evo- 
lution of technologies. Since microprocessors become 
obsolete every three years and the time to  find effi- 
cient algorithms for a new system is long, a significant 
portion of investment on a new architecture should be 
preserved throughout generations. 

The key to size scalability of MPCs is the inter- 
connection network (IN) which is also a deciding fac- 
tor in terms of performance and cost of the entire 
system[3]. A size-scalable IN has the property that 
the number of communicating nodes can be increased 
with minor or no change in the existing configuration. 
A generation-scalable IN can be implemented in a new 
technology, and interconnection bandwidth of the IN 
should grow at the same rate as processing speed and 
memory. Without increasing interconnection band- 
width, we cannot fully exploit the increased speed of 
evolutionary processing elements. 

Numerous topologies have been explored for paral- 
lel computers[l, 4, 5, 6, 71. However, the lack of size- 
scalability of some of these networks have limited their 
use in MPCs despite their many other advantages. For 
example, one of the most popular network for parallel 
computers is the binary n-cube topology, also called a 
hypercube. The attractiveness of the hypercube topol- 
ogy is its small diameter, which is the maximum num- 
ber of links (or hops) a message has to travel to reach 
its final destination between any two nodes. For a bi- 
nary n-cube network, the diameter is identical to the 
degree of a node n = log, N .  Each node is numbered 
in such a way that there is only one binary digit differ- 
ence between any node and its logz N neighbors that 
are directly connected to it. This property greatly fa- 
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cilitates the routing of messages through the network. 
In addition, the regular and symmetric nature of the 
network provides fault-tolerance. Despite its small di- 
ameter, high connectivity, simple routing scheme, and 
fault tolerance, the hypercube is not used in the most 
recent MPC projects. One major reason is its lack 
of size-scalability. As the dimension of the hypercube 
is increased by one, one additional link needs to be 
added to  every node in the network. In addition to  
the changes in the node configuration, a t  least a dou- 
bling of the number of existing nodes is required for 
the regular hypercube network to  expand and to re- 
main as a hypercube. 

Torus networks (henceforth, the mesh is referred to 
as a torus if the mesh has wraparound connections in 
the rows and columns) are easily implemented because 
of the simple regular connection and small number of 
links (four) per node. Due to  its constant node de- 
gree, the torus network is highly size-scalable. With a 
network size of N nodes, the minimal incremental size 
is approximately N 1 1 2  for a perfectly balanced net- 
work. However, the torus network also suffers from 
a major limitation which is its large diameter (N'/* 
for an N-node network) along with its limited connec- 
tivity. Despite the fact that the mesh/torus topology 
have limited connectivity and a large diameter, many 
recent MPC projects such as Intel Paragon[8], Cray 
Research MPP Model[S], Caltech Mosaic C[lO], Mas- 
Par MP-1[11], Stanford Dash Multiprocessor[l2], and 
Tera Computer Tera Multiprocessor[l], use this topol- 
ogy for the IN. 

Motivated by these limitations, we have explored a 
new network topology, called Optical Multi-Mesh Hy- 
percube (OMMH), which combines the advantages of 
both the hypercube (small diameter, high connectiv- 
ity, symmetry, simple control and routing, fault tol- 
erance, etc.) and the mesh (constant node degree 
and scalability) topologies, while circumventing their 
disadvantages (lack of scalability of the hypercube, 
and large diameter of the mesh). We have also de- 
veloped a three-dimensional (3-D) optical implemen- 
tation methodology which exploits the advantage of 
both space-invariant free-space and multiwavelength 
fiber-based optical interconnects technologies. 

The distinctive advantages of the proposed design 
methodology include: (1) an efficient and scalable in- 
terconnection network; (2) better utilization of the 
space-bandwidth product (SBWP) of optical imaging 
systems; (3) full exploitation of the parallelism of free- 
space optics and high bandwidth of fiber-optics; and 
(4) compatibility with the emerging two-dimensional 
(2-D) optical logic and switching, and opto-electronic 
integrated circuit technologies. 

2 Structure of optical multi-mesh hy- 
percube network 

In this section, we formally define the structure of 
the OMMH. We then compare and contrast structural 
properties of the OMMH with the regular hypercube 
network. 

2.1 Topological definition of OMMH net- 
work 

An ( 1 ,  m, n)-OMMH, where 1 ,  m, and, n are integers, 
network consists of 1 x m x 2" nodes and an address of a 
node has three components; (i, j ,  k), where 0 5 i < 1 ,  
0 5 j < m, 0 5 k < 2", and i , j ,  k are integers. 
The topology of an ( 1 ,  m, n)-OMMH network is defined 
by five interconnection functions for a node (i, j ,  k) as 
follows: 

f m l ( i , j , k ) =  ( ( i +  1) mod 1 ,  j ,  k) 

0 f m 2 ( i , j ,  k )  = ( ( 1  + i - 1) mod 1 ,  j ,  k) 

fm3(i,j, k) = (i, ( j  + 1)  mod m, k) 

f m 4 ( i , j , k )  = ( i ,  ( m + j  - 1) mod m, k )  

fd(i,j,kE-l ' . '  kd+lkdkd-l...kO) = ( i , j , k " - l  
. . . kd+l k d k d - 1  . . .ko), for d = O , l , .  . . , n - 1, 
where kn-l  . . . kd+lkdkd-l . . . ko is a binary rep- 
resentation of integer k .  

The first four interconnection functions, fml , fm,, 
f m 3 ,  and fm,, define torus connections of the OMMH 
network. We refer to links generated by these four 
interconnection functions as torus links. The last in- 
terconnection function, f e d ,  for d = 0 , 1 , .  . . , n - 1, de- 
termines the binary n-cube interconnection. We refer 
to  links generated by this interconnection function as 
hypercube links. 

2.2 OMMH structure characteristics 

2.2.1 OMMH interconnection structure 

Fig.1 shows a (4,4,3)-OMMH interconnection where 
solid lines represent hypercube links and dashed lines 
represent torus links. A (4,4,3)-OMMH consists 
of 4 x 4 x 23 = 128 nodes. Small black circles 
represent nodes of the OMMH network which are, 
in this paper, abstractions of PES which consist of 
electronic processing modules for computation and 
optical sources/detectors for communication. Both 
ends of torus links, dashed lines, are connected for 
wraparound connections of the torus if they have the 
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Figure 1: An example of the optical multi-mesh hyper- 
cube network: a (4,4,3)-OMMH (128 nodes) intercon- 
nection is shown. T w o  links with the same labels are 
connected for the wraparound connections o f  the torus. 
Only a few addresses are shown in the parenthesis for 
clarity. Solid lines represent hypercube connections and 
dashed lines torus connections. 

same labels. The size of the OMMH can grow without 
altering the number of links per node by expanding the 
size of the torus; for example, by inserting 3-cubes in 
the row or column of the torus in Fig. 1. This feature 
allows the OMMH to  be size-scalable. More discussion 
on the scalability issue will follow in subsection 2.3.2. 
An interesting isomorphic network is shown in Fig. 2. 
The same network is redrawn as a 4 x 4 torus-clustered 
3-cube. It can be viewed as 8 concurrent toruses where 
8 nodes having identical torus addresses form one 3- 
cube. It can also be viewed as 16 concurrent 3-cubes in 
which 16 nodes having identical hypercube addresses 
form a 4 x 4 torus. 

2.2.2 Message routing in OMMH 

Due to the regularity of the structure, a distributed 
routing scheme can be implemented without global in- 
formation. Since the OMMH is a point-to-point net- 
work, packet communication is assumed in the mes- 
sage routing scheme. For an (l,m,n)-OMMH net- 
work, let the addresses of two arbitrary nodes S and 
T be (i,, j,, k,) and ( i t ,  j t ,  kt), respectively, where 
O < i , < l , O ~ i ~ < l , O ~  j s < m , O < j t < m ,  
0 5 k, < 2", and 0 5 kt < 2". The message routing 
scheme from S to T is that of an n-cube network or 

Figure 2: A (4,4,3)-OMMH interconnection network, 
another isomorphic view. Wraparound connections o f  the 
torus are omitted and only a few addresses are shown in 
the parenthesis for clarity. Solid lines represent hyper- 
cube connections and dashed lines torus connections. 

that of an 1 x m torus network or a combination of 
the two depending upon the relative locations of the 
nodes. 

1. Routing within a hypercube: if is  = it and j, = j t ,  
then S and T a r e  within the same hypercube. The 
routing scheme for this case is exactly the same 
as that of the regular n-cube network. 

2. Routing within a torus: if k, = k t ,  then S and T 
are within the same torus. The routing scheme 
for this case is exactly the same as that of the 
regular 1 x m torus network [13]. 

3. Routing through toruses and hypercubes: if none 
of the above two cases are true, S and T share 
neither a hypercube nor a torus. There are sev- 
eral options available for this case. One option 
uses the hypercube routing scheme until the mes- 
sage arrives at  the same torus where T resides, 
and then uses the torus routing scheme for the 
message to arrive at  T. In another option, the 
torus routing scheme can first be applied to for- 
ward the message to the same hypercube where 
T resides, and then the message can reach T us- 
ing the hypercube routing scheme. We can also 
mix the hypercube and the torus routing until the 
message is forwarded to the same hypercube or to 
the same torus where T resides, and then we can 
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forward the message to T using the hypercube or 
the torus routing scheme, respectively. 

The OMMH is less sensitive to performance degrada- 
tion due to faults in links or nodes because the routing 
scheme in the OMMH has no preferred path, meaning 
all alternative paths have the same number of hops be- 
tween any two nodes. This is an important advantage 
over other networks which have preferred paths such 
as Hypernet[7], Enhanced hypercube[5], or Extended 
hypercube[l4]. 

2.2.3 Diameter and link complexity 

The distance between two nodes in a network is de- 
fined as the number of links connecting these two 
nodes. The diameter of a network is defined as the 
maximum of all the shortest distances between any 
two nodes. The diameter of the network is of great 
importance since it determines the maximum number 
of hops that a message may have to take. An 1 x m 
torus has diameter (LI/2j + Lm/2J). The diameter of a 
hypercube with N nodes is log,N. Thus, the diameter 
of (I, m, n)-OMMH is (Ll/2J + Lm/2] + n) .  

Link complexity or node degree is defined as the 
number of links per node. The higher the link com- 
plexity, the greater is the hardware complexity and, 
consequently, the cost of the network. The node de- 
gree of a hypercube with N nodes is log,N and that of 
( I ,  m, n)-OMMH is ( n  + 4). N is equal to ( I  x m x 2n) 
if the hypercube and the OMMH have the same net- 
work size. A comparison of diameters should be ac- 
companied by a comparison of link complexity, be- 
cause a higher connectivity resulting from a higher 
link complexity is expected to lead to smaller diam- 
eters. Fig.S(a) compares the diameters of the hyper- 
cube and the OMMH, where (16,16, n)-OMMH means 
the size of the torus in the OMMH is fixed and the size 
of the hypercube in the OMMH is changed to have the 
same network size for comparison purposes. Similarly, 
( I ,  m,  4)-OMMH implies the size of the hypercube in 
the OMMH is fixed and that of the torus is changed. 
Fig.3(b) compares link complexities or node degrees 
of the hypercube and that of the OMMH. It should 
be noted that (I, m, 4)-OMMH has constant link com- 
plexity over the network size. This feature enables 
OMMH network to be scalable; that is, the growth 
of the network size does not affect the link complex- 
ity. Fig.3(c) depicts the growth of the total number 
of links in the network as the network size increases. 
For a network size of one million nodes, the hyper- 
cube network contains about 10.5 million links while 
the ( I ,  m, 4)-OMMH has about 4.2 million links and 
(16,16, n)-OMMH has approximately 8.4 million links. 
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Figure 3: Comparison of (a) diameter, (b) link complex- 
ity, (c) total number of links, and (d) normalized average 
message distance of the hypercube and the OMMH when 
the two networks have the same number of nodes. 

Since one link implies one physical path, electrical or 
optical, between two nodes, the OMMH network is 
cost-efficient compared to the regular hypercube net- 
work in terms of hardware requirement. 

2.3 OMMH network properties 

2.3.1 Communication efficiency 

It seems reasonable to assume that an efficient and re- 
alistic multicomputer system will show much heavier 
traffic over short distances than over long communi- 
cation paths since tasks which can be partitioned into 
smaller subtasks would usually be assigned to neigh- 
boring processors. To characterize the locality of mes- 
sages in multicomputer systems, the Geometric Dis- 
tribution Model have been suggested and used to show 
performance of computer networks[7, 6, 151. The ge- 
ometric distribution model is defined as follows. For 
every source S, the nodes of the network are divided 
into regions R1,  R z , .  . . of increasing distance from S. 
A fraction p of all messages is destined for region R1 
of S, p of the remaining messages go to region Rz, and 
so on. Within each region, the distribution is uniform. 
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Fig.4 shows the normalized average message dis- 
tance using the geometric distribution model where 
each region is 4-hop wide. Normalized average dis- 
tance is defined to be the average message distance 
multiplied by the number of links at  the node[6]. We 

Normalized average 
message distance 

Hypercube(Prob=0.5) 

,,' Hypercube(Prob=O.6) 
200 

(l,m,lO)-OMMH(Prob=0.5) - Network size 
2' O 22O 23O 

Figure 4: Normalized average message distance using 
geometric distribution model with 4-link wide region. 
Probability within each region is 0.5, 0.6, 0.7, 0.8, or 
0.9. 

compare normalized average message distances of the 
hypercube and the ( I ,  m, n)-OMMH when the two net- 
works have the same number of nodes. With N nodes 
as the network size, the dimension of the hypercube 
is log,N and 1 x m x 2" nodes in the OMMH must 
be equal to N .  The size of the torus in the OMMH 
is chosen as square as possible. Fig.4 reveals that the 
increase of the normalized average message distance 
of the OMMH with constant cube with respect to the 
growth of the network size is negligible (constant in the 
graph) while that  of the hypercube grows logarithmi- 
cally with respect to the network size. This implies 
that the OMMH can be scaled up with little increase 
of the normalized average message distance when the 
message destination distribution can be predicted by 
the geometric distribution model. 

2.3.2 Size-scalability 

As can be seen in Fig.S(b), the OMMH with a con- 
stant cube as a basic building block has a constant 
node degree, which means that the size of the OMMH 
is ready to  be scaled up by expanding the size of the 
torus without affecting the link complexity (number 
of links per node) of existing nodes as is the case in 
expanding the size of the hypercube network. How- 
ever, we cannot just add one node to the OMMH. For 
an (l ,m,n)-OMMH, we need to add at  least 1 x 2n 

nodes (if 1 < m).  In addition, in Fig.4, the normalized 
average distance of the OMMH under geometric mes- 
sage distribution remains constant as the network size 
grows. This implies that the OMMH can be scaled up 
without increasing the normalized average distance. 
On the contrary, the regular hypercube can only be 
scaled up with logarithmic increase in the normalized 
average distance. 

3 Scalable Optical Design of OMMH 
Network 

An OMMH network is constructed from simple 
building blocks (hypercubes) in a modular and in- 
cremental fashion. These building blocks, once con- 
structed, are left undisturbed when the network grows 
in size. The OMMH can be viewed as a two-level in- 
terconnection network: high-density, local connections 
for hypercube links (within a basic module), and high 
bit rate, low-density and long connections for the torus 
links connecting the basic building blocks. The opti- 
cal implementation also consists of two levels: free- 
space space-invariant optics for the construction of 
basic building blocks, and multiwavelength fibers for 
the torus links. The rationale for the two-level de- 
sign approach is as follows; the use of space-invariant 
free-space optics would result in compact and sim- 
ple building blocks that can be easily reproduced[l6]. 
However, it would not be easy to implement scalable 
optical interconnects with totally space-invariant op- 
tics only, since a single space-invariant optical com- 
ponent such as a hologram is used to image multiple 
nodes for totally space-invariant interconnects. Thus, 
it  would be necessary to  redesign the component in 
order to increase the number of nodes. However, 
since the minimum incremental size of the OMMH is 
one hypercube module (a basic building block), the 
use of space-invariant optics within the basic building 
block will not limit the scalability of the OMMH. We 
use multiwavelength fiber optics to connect the ba- 
sic building blocks because fiber optics would provide 
affordable scalable interconnects and the wavelength 
division multiplexing technique would make a better 
utilization of the transmission capacity of an optical 
fiber[l7, 18, 191. The breakdown of functional require- 
ments for the OMMH network is consistent with the 
advantages of free-space and optical fiber technologies. 
The size of the OMMH can be increased by adding 
hypercube modules, which provides modularity and 
size-scalability. Generation-scalability is provided by 
the use of high-bandwidth wavelength multiplexed op- 
tics which would match communication bandwidth re- 
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quirements of future processing elements. 
In the following, we first summarize a design 

methodology to implement optical space-invariant hy- 
percube networks (for more details see Ref. [20]) 
and then, propose an optical implementation of hy- 
percubes as basic building blocks using binary phase 
gratings. Finally we show how to connect these build- 
ing blocks with multiwavelength optical fibers for the 
construction of OMMH networks. 

3.1 Design methodology for optical 
space-invariant hypercubes 

A model of a 3-D free-space optical interconnection 
network architecture is depicted in Fig. 5. It is as- 

Electronic chips with 
optical sources and detectors 
integrated onto them 

Boardl 
 plan^) 

spatial shifts required to achieve hypercube connec- 
tions. Thus, each connection rule for an n-cube con- 
tains two entities, Row(n)  and Col(n). For example, a 
shift rule such as Row(3) = 0 ,  f l ,  coI(3) = f l  states 
that in order to implement a 3-cube network, each 
plane is to be replicated into 5 images. For a Row(3) 
= 0, the corresponding plane is imaged into the op- 
posite plane straight without any row-wise or column- 
wise shift. The remaining 4 replicas are then shifted as 
follows. For a Row(3) = +1,  the corresponding image 
is shifted upwards by one row. Similarly, a Row(3) = 
-1 indicates a shift by one row downwards. A Col(3) 
= +1 means a shift to the right by one column, and 
Col(3) = -1 is a shift to the left by one column. The 
shifted images need to be simultaneously superposed 
on the opposite plane to achieve the required connec- 
tions. 

We summarize symbols and their meanings to be 
used in the generalized algorithm. 

0 PlaneL (or PlaneR): A plane on which one of the 
two partitions of nodes is placed. 

C ( n )  (or EC(n)) :  the number of empty rows (or 
columns) that are inserted between two layouts 
of ( n  - 1)-cubes on the same plane to construct 
an n-cube. 

Optical Interconnect Module(0lM) 
0 Dr(n) (or Doc(.)): the number of rows (or 

columns) of the resulting 3-D n-cube on each Figure 5: A model for 3-D free-space optical intercon- 
nect architectures plane. 

sumed in the model that processing elements (PES) 
are partitioned into two sets of equal size and there is 
no inter-PE communication link between any two PES 
on the same set. Instead, free-space optics provides 
all inter-PE communication links. This eliminates all 
electrical links between PES on the same plane, re- 
sulting in much denser realization of arrays of PES on 
the plane. Each plane contains PES and optical tran- 
ceivers (sources and detectors) that could be located 
throughout the entire plane and allow circuit design- 
ers more of a three-dimensional (3-D) layout flexibility 
rather than being limited to the periphery of the plane 
as with electrical interconnections. 

The construction of an arbitrary n-cube network 
is based on the space-invariant (n  - 1)-cube network. 
Fig. 6 presents the 3-D optical implementation of R- 
cube networks, for n = 2, . . ., 5. These implementa- 
tions represent basic modules to be used for the imple- 
mentation of larger network sizes. To facilitate the de- 
scription of the generalized embedding algorithm, we 
define a connection rule to be the amount of row-wise 
(upward or downward) or column-wise (left or right) 

0 ;R,(n) (or R,(n)): the amount of upward rota- 
tion of an (n  - 1)-cube layout on each plane to 
construct an n-cube. 

0 Row(n) (or Col(n)): the amount of row-wise (or 
column-wise) shifts for implementing an n-cube. 

An Algorithm for Constructing a 3-D Space- 
invariant n-cube from an ( n  - 1)-cube 

The following three-step algorithm constructs a 3- 
D space-invariant n-cube (n > 5) from a 3-D space- 
invariant ( n  - 1)-cube network. 
Step one: Given PlaneL and PlaneR of a space- 
invariant ( n  - 1)-cube, we rotate each plane to the left 
by 2 9  columns if n is even or 2* rows upwards if 
n is odd. 
Step two: The rotated plane is then placed at  the 
right side of the original ( n  - 1)-cube of the opposite 
plane if n is even, or underneath if n is odd. Dur- 
ing the rotation, no empty columns or rows that al- 
ready exist in the (n  - l)-cube plane are counted as 
the shift amount. If n is even, we insert &(n) = 2 e  

86 



Figure 6: 3-D space-invariant hypercube networks of di- 
mension n, where 2 5 n _< 5 .  

n-6 + &(2i + 4) empty columns between the two 
planes, the original and the rotated one. Or E,.(.) = 
2 q  + c8z €,(2i+ 5 )  empty rows if n is odd. Note 
that this insertion is done for PlaneL of ( n  - 1)-cube 
and the rotated version of PlaneR of ( n  - 1)-cube, and 
for PlaneR of (n  - 1)-cube and the rotated version of 
PlaneL of ( n  - 1)-cube. 

Step three: We prefix 0 as the most significant bit in 
all addresses of nodes on the resulting PlaneL, and 1 
as the most significant bit in all addresses of nodes on 
the resulting PlaneR. 

When n is even, PlaneL and PlaneL for the space- 
invariant n-cube have the same row dimensions as 
those of the (n  - 1)-cube and column dimensions are 
2 x  (column dimension of the ( n  - 1)-cube) + (the 
number of empty columns inserted in step two). By 
row dimension and column dimension we mean the 
number of rows including empty rows and the num- 
ber of columns including empty columns, respectively. 
Thus, D,.(n) = D,.(n - 1) and D c ( n )  = 2 x Dc(n  - 1) 

When n is odd, PlaneL and PlaneL for the space- 
invariant n-cube have row dimensions that are equal to 
2 x (row dimension of the ( n  - 1)-cube) + (the number 
of empty rows inserted in step a), and the same column 
dimensions as those of the ( n  - 1)-cube. Thus, Dr(n) 
= 2 x Dr(n - 1) + €,.(n) and D,(n) = De(n  - 1). 

If n is even, the connection rule of the resulting n- 
cube is: Row(n) = Row(n-1) and Col(n) = Col(n-1), 
k[D,(n)  - Dc(n - 3)]. If n is odd, the connection 
rule of the resulting n-cube is: Row(n)  = Row(n - l),  
*[Dr(n)-D,.(n-3)], and Col(n) = Col(n-1). Since 
we assume bidirectional communication between two 
planes, the connection rule applies to both planes. 

n-7 

+ f e ( n ) .  

3.2 Optical implementation of space- 
invariant hypercubes using binary 
phase gratings 

In this section, we discuss an optical implementa- 
tion of 3-D space-invariant hypercube networks using 
binary phase gratings (BPGs). Fig. 7 describes a 
hardware arrangement of optical components which 
could implement a space-invariant 5-cube network For 

Figure 7: Space-invariant optical implementation of a 
5-cube network using a binary phase grating. 

clarity, only a 2-D view is shown. A BPG is added at  
the pupil plane between two imaging lenses to pro- 
vide necessary beam steering operations. This type 
of arrangement was first proposed in Ref. [21]. We 
extended it here for the implementation of space- 
invariant hypercube networks. Since the interconnec- 
tion patterns are space-invariant, any beam-steering 
operation performed on one of the beams must be per- 
formed on all of the beams that pass through the BPG. 
The beam-steering operation of the BPG is dictated 
by the grating equation shown in Eq. 1 which de- 
scribes the relationship between the angle of the inci- 
dent beam(&), the period of the grating(p), the wave- 
length of the light(X), the grating order(m), and the 
angle of the m-th order's diffracted beam(Od,). 

p(sin ed, - sin 0 ; )  = mX (1) 

Assume that the size of a node in one-dimension be 
d and the focal length of each lens be f. Let hFEO 
be the distance of an image spot in PlaneR from the 
optical axis made by m-th order diffracted beam from 
PEO. Then, 

Given that Bi = tan-'(l.Sd/f), Eq. 2 can be rewritten 
hpEO = f x tanod, (2) 

as: 
mX 1.5d 

hpEo = f x t a n { s i n - ' [ p  + s i n ( t a n - ' ( T ) ) ] }  (3) 

a i  



We assume that the structure of the grating is de- 
signed such that the power of the incident beam is 
equally distributed into 0th-order, f l s t  order, and 
*3rd order of diffracted beams and others are sup- 
pressed. We can have different amounts of optical 
power from the original beam to be routed into the dif- 
ferent orders by changing the periodic structure of the 
grating. To have different angular spacings, we should 
change the period of the grating[22]. Since PE0 is sup- 
posed to be connected with P E l ,  PE4, and PE16 for 
the 5-cube network, the following conditions should be 
satisfied. 

hgEo = 1.5 x d (4) 
h$ko =0 .5  x d 
h:io = - 1 . 5 x d  
hpkO > 2.0 x d 
h p i O  > 2 . 0 x d  

Note that conditions for hpLO and h p i O  make -1st 
and -3rd order diffracted beams fall outside PlaneR 
to avoid unwanted connections. 

Similarly, the beam from PE5 generates multiple 
spots in PlaneR for which the distances from the op- 
tical axis are: 

mX 0.5d hpE5 = f x tan{sin-'[- + sin(tan-l(-))]} (5) 
P f 

To make connections from PE5 to PE1, PE4, PE21, 
the following set of conditions should hold: 

hgE5 = 0 . 5  x d (6) 
h:k5 = -0.5 x d 
hFb5 = 1.5 x d 
h$ i5  < -2.0 x d  
h p z 5  > 2.0 x d 

Note that conditions for hFE5 and hFi5  make +3rd 
and -3rd diffracted beams fall outside PlaneR. Since 
PE0 and PE5 are symmetrically placed, with respect 
to the optical axis, with PE17 and PE20, we can deter- 
mine the period of grating(p) to provide the required 
connections for the 5-cube network by solving Eqs. 4 
and 6 given the size of a node, the focal length of the 
lens, and the wavelength of the light source. However, 
we cannot have an exact solution since image spots 
generated by both PE0 and PE5 cannot be placed on 
uniform spacings in PlaneR. An approximate solution 
could be determined by a computer program which op- 
timizes conditions in Eqs. 4 and 6. By optimization 
we mean minimization of errors in each condition. For 

example, given that the node size in one dimension is 
5 m m ,  the wavelength of the light source 785nm, and 
the focal length of the lens 175mm, the optimum pe- 
riod of the grating is computed to be 27.5pm which 
causes maximum misalignment of 4.Opm at PE21 from 
the PE5 connection. 

The size of a basic n-cube module that can be im- 
plemented is primarily determined by the number of 
fanouts that can be managed by the BPG since an 
n-cube implementation requires 2n - 1 fanouts. The 
BPG must be able to generate 2n - 1 beams of equal 
power. 

Power Loss: The proposed hardware setup suffers 
approximately 44% power loss (4 out of 9 diffracted 
beams from each source fall outside the receiving plane 
as discussed in Sec. 3.1) which is not because of the 
BPG but because of the totally space-invariant im- 
plementation methodology. Power efficiency is traded 
for low design complexity and for better use of SBWP 
of optical components required. We are currently in- 
vestigating other optical means such as lenslet arrays 
for implementing the basic modules which are power 
efficient and more robust. 

3.3 OMMH construction: Design of torus 
links to connect hypercube modules 

3.3.1 Design methodology for torus links with 
fiber optics 

An ( 1 ,  m,  n)-OMMH can be constructed as follows: 

(1) 1 x m n-cube modules as described in Sec. 3.2 are 
placed in a 1 x m matrix form. 

(2) I x m nodes, each of which is from the same lo- 
cation of the n-cube modules, are connected to 
form a torus of dimension 1 x m. 

(3) Step 2 is repeated until every node is connected, 
resulting in 2" toruses of size t imesm.  

Since two adjacent n-cube modules are connected 
by 2" torus links, the number of optical fibers re- 
quired grows exponentially as n increases. A possible 
solution for reducing the number of optical fibers re- 
quired is the use of a wavelength division multiplexing 
(WDM) technique. However, a straightforward use 
of the WDM also requires a prohibitively large num- 
ber of different wavelengths. For example, to connect 
two ten-cube modules, we need 2'' = 1024 different 
wavelengths. In this paper, we use a wavelength-node 
assignment technique which alleviates this problem. 

3.1, an n-cube layout (Planer, 
or PlaneRI consists of 2L("-')lZJ non-empty rows 

Referring to Sec. 
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and 2r("-')/21 non-empty columns. For PlaneL and 
PlaneR,  we assign the following wavelengths to the 
nodes in the first row; XI, X2, . . ., X2r(n-~)121 . Then, 
we assign X2, ..., X2r(,.-l)/q , XI, as wavelengths to 
the nodes in the second row. In general, wavelength- 
assignment in a row is achieved by rotating the 
wavelength-assignment of previous row by one col- 
umn. This wavelength assignment results in no two 
nodes in the same row or column having an identical 
wavelength. We then use a 2r("-1)/21-channel wave- 
length multiplexed fiber t o  connect two rows in the 
adjacent two n-cube modules. Similarly, a 2L(n-')/21- 
channel fiber is used to connect two columns in the ad- 
jacent two n-cube modules. Thus, an implementation 
of ( I ,  m,  n)-OMMH using the above wavelength assign- 
ment method requires no more than 2[("-')/'1 differ- 
ent wavelengths. In addition, no more than 2r(n-')/21 
optical fibers will be required for the connections be- 
tween any two adjacent n-cube modules. 

Now, we consider an optical implementation of the 
(1, m, n)-OMMH network. We assume the availability 
of two optical components: a quadrant beam splitter 
(QBS) which splits a single beam into four beams (the 
QBS also combines four beams into one since it is bi- 
directional) and an i-channel wavelength multiplexor 
(WMUX) which multiplexes beams with i different 
wavelengths into a single beam (also demultiplexes 
since it is bi-directional). The realization of these two 
components with current technology will be discussed 
in detail in the following subsection. We also assume 
that each node has two light sources; one source, Sh, 
illuminates the BPG to generate the required hyper- 
cube links and the second source, S t ,  is coupled with 
an optical fiber for the torus links. A QBS is attached 
to every St to provide the four fanouts, St,, S t ,  , St,, 
and S,, (north, south, east, and west). A WMUX is 
located a t  both ends of each row and each column. Let 
each WMUX at  the right end of a row be WMUXE, 
each WMUX at  the left end of a row be WMUXw, 
each WMUX a t  the top of a column be WMUXN, and 
each WMUX at  the bottom of a column be WMUXs. 
In a given row, a WMUXE multiplexes lights from 
the S,, sources of that  row into a single fiber which 
is then connected to a WMUXw in the neighboring 
n-cube module. Similarly, S t N s  Stss,  and S t w s  are 
multiplexed by WMUXN, WMUXs, and WMUXw, 
respectively. Figure 8 illustrates a five-cube module 
with torus link interface. For clarity, only the 2-D 
view is shown and, thus, only two fanouts by a QBS 
is given. Figure 9 shows a full size representation of 
the (5,4,5)-OMMH implementation emphasizing the 
torus links. For clarity, only links among PlaneLs are 
depicted. 

Figure 8: A 2-0 view of a 5-cube module to interface 
with torus links for the construction of the ( i lm,5)-  
OMMH network. 

3.3.2 Optical hardware required for torus 
links 

In this Subsection, we discuss the functionality and 
limits of two optical components used in the imple- 
mentation of torus links. 

Quadrant Beam Splitler(QBS): 
The function of the QBS is to either split one beam 

into four beams or combine four beams into a sin- 
gle beam. An optical arrangement of the QBS using 
graded index (GRIN) lenses[23] is illustrated in Fig. 
10.a. Four small GRIN lenses are placed on the end 
facet of the large GRIN lens. The large lens is used 
to collimate a beam from a single trunk fiber and the 
aperture of the collimated beam is divided into four 
by the smaller lenses. The small lenses then focus the 
beams onto fibers. Beam combination or merging is 
performed but in the opposite direction. Figure 10.b 
illustrates the geometry of the QBS with GRIN lenses 
for the purpose of calculating power loss occurring at  
the connection between the large GRIN lens and small 
GRIN lenses. Since four small GRIN lenses do not 
cover the entire end-facet area of the large GRIN lens, 
some portion of beam aperture from the large GRIN 
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a b c d  e f g h  i j k l  m n o p  

Legend: 
0 

m n o p  

Quadrant beam splitter 
at each node 
1 x4 multiplexer/demultiplexer 
at both ends of each row and 
column 
Fiber links between quadrant 
beam splitter and multiplexer 
4 channel wavelen th division 
multiplexed fiber linxs 

Figure 9: A full size representation of a (5,4,5)-OMMH network emphasizing torus links. Only connections among 
PlaneL are shown for clarity. Similar connections among PlaneR exist. T w o  links with the same labels are connected 
for wraparound connections. In the parenthesis, first two address components o f  (5,4,5)-OMMH (i.e., torus address 
components) are shown. 
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Figure 10: (a) A quadrant beam splitter using GRIN 
lenses. (b) Geometry of the quadrant beam splitter. 
(c) A quadrant beam spl i t ter using substrate mode holo- 
grams [24] 

lens cannot be captured by four small GRIN lenses, re- 
sulting in power loss. Suppose that a radius of a small 
lens is T .  The smallest possible radius of the large lens 
that can cover four small lenses is then ? + a y .  Thus, 
4xr2/[7r(l + &)2r2] = 68.6% of the end-facet area of 
the large GRIN lens is covered by the four small lenses. 
Therefore, approximately 31.4% of power is lost from 
the large GRIN lens to the four small lenses during 
beam splitting process. However, negligible power is 
lost during beam combination process since the end- 
facets of the four small lenses are completely covered 
by the large GRIN lens. 

A more power efficient (less than 20% power loss) 
QBS has been reported in Ref. [24]. It uses substrate 
mode holograms to reduce mechanical alignment and 
chromatic sensitivity. Figure 1O.c illustrates the func- 
tionality of a QBS using multiplexed substrate-mode 
volume holograms. Incident beam S, is beam split 
by the multiplexed transmission hologram consisting 
of four superimposed gratings. The gratings diffract 
the beam into four orthogonal directions. The di- 
vided beams propagate through the waveguide by to- 
tal internal reflection provided by the reflection holo- 
grams. Finally, four beams are coupled out of the sub- 
strate guide through transmission holograms shown as 
S t N , S t S , S t E ,  and stw. 

The QBS design with substrate mode holograms 
is better than the design with GRIN lenses in terms 
of power efficiency, alignment, and fiber coupling ef- 
ficiency. However, substrate mode multiplexed holo- 
grams for the QBSs are not commercially available at  
this time. 

Wavelength Multiplexor( WMUX): 
An i-channel wavelength multiplexor(or demulti- - 

plexor) which separates (or combines) i channel wave- 
length division multiplexed beams using a GRIN lens 
and a blazed grating was demonstrated in Ref. [25]. 
Demultiplexing is performed as follows; the i channel 
wavelength multiplexed beam enters the GRIN lens. 
The beam is then reflected and divided into i different 
angles, depending on the wavelength, from the reflec- 
tion grating at  the other end of the GRIN lens. The 
i separated beams are then coupled into the appro- 
priate fibers. Multiplexing is performed in a similar 
fashion but in the reverse way. WMUXs of this type 
allow more of the total bandwidth of the optical fiber 
to be used and more than ten channels are currently 
available. Typical values of the insertion loss and the 
crosstalk in available WMUXs are generally 1 - 2 dB 
and less than -30 dB, respectively. Since ( l ,m,n)-  
OMMH requires 2r(n-1)/21-channel WMUXs, with 16- 
channel WMUXs, it is possible to implement any size 
of OMMH networks if n 5 9. 

4 Conclusions 

Size-scalable network topologies such as 
mesh/torus, ring, and tree, are becoming the preferred 
choice for the computer industry in the design of mas- 
sively parallel computers despite their inherently lim- 
ited topological characteristics such as low connectiv- 
ity, large diameters, long average distances, and lack 
of fault tolerance. For example, many recent projects 
for the development of ultracomputers (Intel Paragon, 
Cray Research MPP Model, Caltech Mosaic C, Mas- 
Par MP-1, Kendall Square Research KSR-1, Stanford 
Dash Multiprocessor, Tera Computer Tera Multipre 
cessor, and Thinking Machine Corporation CM-5, etc) 
are based on the such topologies. Interconnection net- 
works which are not only scalable, but also possess 
good topological characteristics such as small diam- 
eter, high connectivity, constant node degree, simple 
routing scheme, and fault tolerance, would greatly en- 
hance the performance of massively parallel comput- 
ers. 

We have presented in this paper a new interconnec- 
tion network, called the Optical Multi-Mesh Hyper- 
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cube (OMMH), for massively parallel computers. The 
distinctive features of the OMMH network are its scal- 
ability, both in size and generation, and modularity 
while retaining positive features of both the hypercube 
(high connectivity, small diameter, simple message 
routing, and fault tolerance) and the mesh (constant 
node degree and scalability) topologies. We have also 
proposed a three-dimensional optical implementation 
method of the OMMH. The  proposed implementation 
is divided into two levels; space-invariant free-space 
optical interconnects for localized high-density hyper- 
cube modules and high bandwidth multiwavelength 
optical fiber links for global low-density torus connec- 
tions. This breakdown of functional requirements for 
the OMMH implementation is intended to fully exploit 
the advantages of free-space space-invariant optics 
(parallelism, simple and compact design, high connec- 
tivity, and cost efficiency) as well as wavelength mul- 
tiplexed fiber-based optics (full utilization of trans- 
mission bandwidth and scalability). In addition, the 
breakdown is intended to provide modularity and scal- 
ability both in size and generation. The two-level 
design methodology enables the construction of the 
OMMH network in a modular and incremental fashion 
(size-scalability) and the use of high bandwidth wave- 
length multiplexed optics in the OMMH can satisfy 
communication bandwidth requirements of the cur- 
rent or near future processing elements (generation- 
scalability). We have also discussed functionality and 
limitations of possible optical hardware which imple- 
ments the OMMH network. 
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