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Abstract 

In this paper, we consider the convergence speed of mean field annealing (MFA). We com- 
bine MFA with microcanonical simulation(MCS) method and propose a new algorithm called 
microcanonical mean field annealing(MCMFA). In the proposed algorithm, cooling speed is 
controlled by current temperature so that computation in the MFA can be reduced without 
degradation of performance. In addition, the solution quality of MCMFA is not affected by 
the initial temperature. The properties of MCMFA are analyzed with a simple example and 
simulated with Hopfield neural networks(HNN). In order to compare MCMFA with MFA, both 
algorithms are applied to graph bipartitioning problems. Simulation results show that MCMFA 
produces better solution than MFA. 

1 Introduction 

Optimal solution is the main purpose of solving engineering problems. However, problems often 
have a large degree of freedom, SO that optimal solution cannot be obtained in a reasonable amount 
of time [l]. A significant progress was made in this area with the invention of two new algorithms: 
simulated annealing(SA) and microcanonical simulation(MCS) [2,3]. Both algorithms use the anal- 
ogy between optimization problem and magnetic material in the statistical physics. SA has received 
more attention and successfully solves the optimization problem using the theory of interpreting 
magnetic material [I]. Another recent achievement was made by Hopfield neural networks(HNN) 
[4]. In the HNN, a neuron is modeled as an independent variable of the optimization problem just as 
an atom in the SA and the role of neuron is similar to  that of atom. Therefore the search method of 
SA can be applied to  HNN for updating the state of neuron. However, the probabilistic search rule 
of SA is difficult to  implement in HNN,  and often requires an excessive computation. One of the 
promising suggestion is a mean field annealing(MFA) which is more amenable to implementation 
by HNN and requires less computation than SA with nearly equal quality of solution [ 5 ] .  

MFA starts at high temperature, and slowly reduces the temperature. However, an excessive 
computation is required by slow cooling from high initial temperature. Previous research shows 
the existence of critical temperature, T,, near which neurons begin to  move to  their final sta.tes. 
For the speed-up of MFA, it is desirable to increase the cooling speed above T, , and decrease it 
near T, . This adaptive cooling requires knowledge of T, . Although efforts were devoted to  find 
T, for specific examples, there is no general technique to estimate T, by analyzing the structure of 
HNN. However during the simulation of MFA, it is easy to  determine T, by observing the energy 
function. 
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MCS is an algorithm that computes the energy function of HNN. We apply this property to 
control the cooling speed of MFA and propose a new algorithm called microcanonical mean field a.n- 
nealing(MCMFA). MCMFA adapts the cooling speed based on the current temperature, so that the 
amount of computation time is reduced without degradation of performance. Therefore MCMFA 
requires less computation than MFA. The adaptive cooling schedule also solves the problem of 
choosing the initial temperature. These properties are examined with analysis and simulation of 
MCMFA. MCMFA is applied to graph bipartitioning problems and results are compared with MFA. 

2 Microcanonical Mean Field Annealing 

MCS uses an imaginary particle called demon for simulating magnetic material [3]. The demon has 
deterministic energy, Ed, and flips the state of neuron. Statistical physics shows that the demon’s 
energy will become Boltzmann distribution 

Prob[Ed] a (1) 

where T represents the temperature of demon [3]. 
Then the deterministic update rule of MCS should be changed to  probabilistic rule as follows: 

Prob[s; = +l/Si = -11 = Prob[E,j > H ( s ;  = + 1 )  - H(si = - 1 ) ]  
PTob[s; = - l / ~ i  = + 1 ]  = Prob[Ed > H ( s ;  = - 1 )  - H(si = +1)] (‘2) 

where si represents the state of ith neuron and H(s)  represents the energy function of HNN. The 
update rule of Eq. 2 is similar to  that of SA. However, in the MCS, the total energy is conserved. 
The decrease of HNN energy causes the increase of demon energy as follows: 

p < Ed > < = p  < Ed > -A < H >, (3) 

where is the number of demon and <> represents the average value. In the equilibrium state, 
the average demon energy is the same as temperature. 

< Ed >= T.  (4) 

Therefore Eq. 3 becomes: 
T <= T -  A < H > / p .  ( 5 )  

We combine the cooling schedule of MFA with Eq. 5 to  propose a new algorithm called micro- 
canonical mean field annealing(MCMFA). 

0 Microcanonical Mean Field Annealing Algorithm: 

1 .  Initialization : T = T;,,itial. 

2 .  while(T > Tminimum) 

(a) select neuron i for update. 
(b) update i th neuron as follows: 

1 
1 + e-A<H>/T < s; >= 
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(c) adjust temperature as follows: 

T <=T -CY- A < H > /p .  

3 .  all states are equilibrated to +1 or -1 according to their signs. 

(7) 

The update rule of Eq. 6 is same as that of MFA. The difference is t..e cooling schedule of Eq. 7. 
In the MFA, a determines the cooling speed and quality of solution. The MCMFA adds A < H > 
term to the cooling schedule of MFA. p determines the influence of A < H > term on the cooling 
speed. If /3 is small, A < H > plays an important role on the cooling speed. As the value of P 
increases, the effect of A < H > term decreases. If p is infinity, MCMFA behaves as MFA. 

3 Analysis and Simulation of MCMFA 

In this section, we analyze the dynamics of MCMFA. We try simple case where wij = 20 > 0 for all 
i ,  j. Although this is not the general case, we can have a qualitative description of the behavior of 
general system from this specific example. In our case, the mean values of neuron states are all the 
same. 

< si >=< s > f o r  all i. (8) 

In the equilibrium state, the temperature of neural networks should be identical to  the temperature 
of demon. Therefore the mean value of final state is 

where N is the number of neurons. The average energy function becomes 

Since our purpose is qualitative understanding of final state, a specific external input$;, does not 
make an important effect on our analysis. For the sake of convenient analysis, all external inputs 
are assumed to  be ‘0’. Then 

< H >= - -N2w < s > 2 .  (11) 
1 
2 

From the energy conservation property, we have 

This equation can be solved graphically as shown in Fig. 1. The straight line corresponds to  right 
hand side of Eq. 12 and the curve represents the left hand side. The initial state is reflected on the 
straight line and the final state is the intersection of two graphs. From Fig. 1, we can expect the 
behavior of MCMFA as follows. First, if the intersection of straight line and x-axis is greater than 
T,, the final energy of HNN is ‘0’. The final temperature of demon is the intersection of the line 
and x-axis. Second, if this intersection is less than T,, the final energy of HNN is less than ‘0’. If 
the slope of the straight line, p, is small, the final temperature is near T,. As /3 grows larger, the 
final temperature becomes lesser. If p is infinity, then the behavior of MCMFA is the same as that 
of MFA. 

MCMFA is simulated with HNN consisting of 100 neurons and 100 edges. The initial energy 
of HNN is chosen to  be ‘0’ and p is chosen to  be ‘1’. Five temperatures are chosen to  be initial 

943 

7 



temperatures and the change of temperature is shown in Fig. 2. If the initial temperature is less 
than T,, temperature converges near T,. If the initial temperature is ‘2’ which is greater than T,, 
the temperature remains unchanged. This result corresponds to  the graphical solution of Fig. 1. 

The effect of P is also simulated and the result is shown in Fig. 3. The initial energy of H N N  
is chosen to  be ‘0’ and demon temperature is chosen to be ‘0.1’. If P is relatively small, the 
final temperature converges to  critical temperature. As the value of P increases, the convergent 
temperature decreases. This simulation result is also same as what is expected from previous 
analysis. 

4 Application 

In this section, we apply MCMFA to graph bipartitioning problems. We investigate the quality of 
solution and convergence speed. We also apply MFA to graph bipartitioning problems and results 
are compared with MCMFA. 

The energy function we use for graph bipartitioning problems is 

where 

cij = 1 i f  nodes i ,  j of the graph are connected 
= 0 otherwise. 

Our graph for the simulation has 100 neurons and 100 edges. These 100 edges are generated 
randomly. We tried this problem 100 times with different interconnections. The results are averaged 
over 100 trials. The detail of cooling schedule is described in what follows. 

MFA : The cooling process starts with initial temperature ‘2’ and stops at  ‘0’. The initial 
temperature is chosen to  be well above the critical temperature. A neuron is selected and its state 
is updated by Eq. 6. After state of neuron is updated, temperature is decreased by small amount 
a. 

T = T - a  (14) 
In general, the convergence speed and solution quality depend on a . We try various values of a 

to compare the convergence speed and solution quality. 
MCMFA : The initial temperature and stop condition are same as those of MFA. But Eq. 7 

is used for cooling schedule instead of Eq. 14. As for P ,  we start with @initial  = 0.1 and increase it 
exponentially as cooling proceeds. 

P = e‘@initia/. (15) 
In order to  compare MCMFA with MFA, we examine the quality of solution vs. the convergence 

speed. We observe the final value of energy function for the quality of solution and the number 
of iterations for the convergent speed. Fig. 4 shows that MCMFA produces better solutions than 
MFA. To reduce the energy of HNN to -42.0, MCMFA needs about 1400 iterations while MFA 
requires more than 2000 iterations. As for -43.0, MCMFA requires about 3000 iterations and MFA 
requires 5000 iterations. 

In order to  investigate the effect of Tinitiar, we try same problem with Tinitiai = 0.4. Fig. 5 shows 
the final value of energy function vs. number of iterations. With small Tinitial, MFA converges 
quickly to poor solution. Thus the performance of MFA is better for the number of iterations 
is less than 2000. However, MFA cannot make any improvement by increasing the amount of 
computation. As for MCMFA, Tiniti.r does not make a large effect on the final solution. The 
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quality VS. iteration curve is similar to  Fig. 4. MCMFA produces a solution with Tinitial = 0.4 
good as with Tinitjal = 2.0. This simulation result shows that MCMFA does not have to  start at  
temperature above T,. Therefore, the problem of choosing Tinitial disappeared in the MCMFA. 

5 Conclusions 

In order to reduce the amount of computation, a new algorithm called MCMFA is proposed. We 
use the properties of MCS and combine it with MFA so that cooling speed can be scheduled 
adaptively during the annealing process. In the MCMFA, the cooling speed is increased a t  the 
temperature where computation makes a little contribution to  final solution. Thus MCMFA with 
adaptive cooling schedule produces better solution than MFA with equal amount of computation. In 
addition, MCMFA solves the problem of choosing the initial temperature. If the initial temperature 
is lower than critical temperature, MCMFA can raise the temperature to critical temperature. Thus 
the initial temperature does not affect the quality of final solution. These advantages are justified 
by analysis and simulation experiments. We analyze the properties of MCMFA with simple HNN 
of which all interconnections have same weights. We also simulate the behavior of MCMFA with 
HNN. MFA and MCMFA are applied to  graph bipartitioning problems and the speed and quality of 
solution are compared. Simulation results show that MCMFA requires less computation than MFA. 
If initial temperature is below critical temperature, MFA converges to  local minimum and produces 
poor solution. But the solution quality of MCMFA is not affected by the initial temperature. 
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