
An Optical Content-Addressable Parallel Processor for
Fast Searching and Retrieving *

A h m e d Lour i
D e p a r t m e n t of Elec t r ica l a n d C o m p u t e r Engineer ing

T h e Univers i ty of Ar izona , Tucson , Ar i zona 85721

Associative processing based on content-addressable memories has been argued to be the natural
solution for non-numerical information processing applications. Unfortunately, the implementation
requirements of these architectures using conventional electronic technology have been very cost
prohibitive, and therefore associative processors have not been realized. Instead, software methods
that emulate the behavior of associative processing have been promoted and mapped onto conven-
tional location-addressable systems. This however, does not bring about the natural parallelism of
associative processing, namely the ability to access many data words simultaneously.

The inherently parallel nature and high speed of optics, combined with the recent technologi-
cal advancements in optical logic, storage and interconnect devices axe raising hopes for practical
realization of highly parallel optical computing systems. This paper presents the principles of de-
signing an optical content-addressable parallel processor, called OCAPP, for the efficient support
of high speed symbolic computing. The architecture is designed to fully exploit the parallelism an
high speed of optics. Several parallel algorithms are mapped onto 0CAPP in bit-paxallel as well as
word-paxallel fashion, resulting in efficient symbolic algorithms with execution times dependent only
on the precision of the operands and not on the problem size. This makes OCAPP very suitable for
applications where the number of data sets to be operated on is high e.g., massively parallel pro-
cessing. A preliminary optical implementation of the architecture using currently available optical
components is also presented.

1 I n t r o d u c t i o n

The "information explosion" seen in recent years has stimulated the development of computer-
based information systems to assist in the creation, storage, modification, classification, and retrieval
of mainly textual or symbolic data. For example, progress in database management systems, expert
systems, and intelligent knowledge-based systems is increasing demand for symbolic information
processing such as text editing, file processing, table sorting, searching, and retrieval. In fact a
substantial proportion of the work-load of modern information processing systems involve searching
and sorting symbolic data[l]. Nevertheless, a majority of today's computers axe designed mainly for
numerical computations, and suffer from a fundamental handicap, which stems from the principle
of addressing the memory.

When a search for a value is made through a location-addressable memory, the entire memory
may need to be searched one word at a time (if tile data is not sorted in memory) which consumes
a great deal of time. There is no logical reason why the search must be done sequential. The only
reason stems from the fundamental handicap of separating processing and memory and addressing
memory one word at a time. This fundamental flaw has forced system analysts and programmers
to develop sophisticated software techniques for symbolic information processing such as hashing

*This research was supported by an NSF Grant No. MIP-S909216.

339

and indexing[2]. However, the implementation of such software techniques on location-addressed
computers has lead to complex, expensive, and inefficient information processing systems.

Searching, retrieving, sorting and modifying symbolic data can be significantly improved by
the use of content-addressable memory (CAM) instead of locatlon-addressabillty. In a content-
addressahle memory data is addressed by its contents[2]. An associative processor is a parallel
processing machine in which the data items are content-addressable with the added capability to
write in parallel into words satisfying certain criterion. It may be that the entire contents of stored
words may be changed or just a few bits of the words. Using this model, processing is carried out
within the associative memory, without transfer to an independent processing unit. Since there is
no addressing of data and no data movement, this implies the elimination of the fundamental yon
Nenmann bottleneck encountered in conventional systems. Moreover, the amount of time required
for searching, retrieving, and updating information is independent of the data set sizes.

However, this model of computing is not being largely used because of the difficulty and high
cost of implementing it in conventional electronic technology. This can be seen from the following:

1.

2.

3.

4.

Each bit cell in an associative memory is much more complex and requires more circuitry than
does a conventional cell. Even with the advent of VLSI technology, the single cell complexity
still does not allow for the use of large associative memories.

The memory storage provides poor storage density compared with conventional memory.

The third major difficulty is the complexity of the interconnects. Recall that in order for
all cells to compare their values to that of the comparand register, the control unit must
broadcast the value to all cells involved in the comparison. However, using conventional
technology, the time delays associated with the broadcasting function are very appreciable.
Moreover, inter-cell interconnects become cumbersome for large array size.

The fourth difficulty is the lack of efficient means of implementing parallel access to the cells,
namely parallel input and output.

There are two hypotheses underlying this paper:

1. that CAM-based processing provides a sound basis to uncover inherent parallelism in symbolic
processing and information retrieval applications, and

2. that optics is, potentially, the ideal medium to exploit such parallelism by providing efficient
implementation support for it.

2 Optical Content-Addressable Parallel Processor

Optical systems hold the promise for providing efficient support for future parallel processing
systems. Optics advantages have been cited on numerous occasions[3, 4, 5, 6]. These include
inherent parallelism, high spatial and temporal bandwldths, and non-interfering communications.
For CAM-based processing, optics may be the ideal solution to the fundamental problems faced by
electronic implementations, namely cell complexity, interconnects latency, difficulty of implementing
information broadcasting and parallel access to the stored data. Optics can alleviate the cell com-
plexity by migrating the implementation of wiring and logic into free-space. The multi-dimenslonal
nature of optical systems allows for data storage and logic to be performed on two-dimenslonal
planes while the third dimension can be used for interconnects. The high degree of connectivity
available in free-space space-invarlant optical systems (10 s to 10s), and the ease with which optical
signals can be expanded (which allows for signal broadcasting) and combined (which allows for
signal funneling) can also be exploited to solve the interconnects problems[7, 8]. Moreover, optical

340

and dectro-optical systems can offer a considerable storage capacity and parallel access than do
pure electronic systems/9].

Figure 1 depicts a preliminary organizational structure for an optical content-addressable parallel
processor called OCAPP. The architecture is organized in a modular fashion, and consists of a
selection unit, a matcli/eompare unit, a response unit, an output unit, and a control unit. The
architecture is developed to meet four goals, namely: (1) exploitation of maximum parallelism;
(2) amenability to optical implementation with existing devices; (3) modular design in that it can
be scalable to bigger problems; and (4) ability to efficiently implement information retrieval, and
symbolic computations. Moreover, the programming methodology for OCAPP is compatible with
that of existing single-instruction multiple data (SIMD) systems. In what follows we describe the
role of each unit. Detailed optical implementation of OCAPP will be presented in Sec.3.

The selection unit is schematically described in Fig.2. It is comprised of (1) a storage array of n
words, each m bits long (in actuality, the storage array capacity is n x 2m, since each bit position
is comprised of a true bit to;j and its complement t~i); and (2) word and bit-slice enable logic to
enable/disable the words and/or the bit-slices that participate in the match operation, and reset
the rest. It is assumed that the storage array can be loaded in parallel and (if need be) read in
parallel.

The match/compare unit shown in Fig.3, contains a (1) 1 x m interrogation register I; (2) logic
hardware to perform parallel bitwise comparison between the bits of the interrogation register and
the enabled bits of the storage array; (3) two n × 1 working registers, G and L, which are used
for magnitude comparisons (to be explained later); (4) a n x 1 response register R for displaying
the result of the comparison; and (5) a single indicator bit called the match detector MD, which
indicates whether or not there is any matching words. This unit allows comparison of a single
operand stored in the interrogation register and the words stored in the storage array. As such it
is considered an SIMD (single-instruction-multlple data) unit. Bit position Ri of R is set to one
when word V//of the storage array matches the contents of I. The I register is a combination of
the comparand register C and the mask register M as shown in table 1. As such, it holds the
operand (depending on masking information if any) being searched for or being compared with. It
is assumed that register I is available in dual-rail logic (both true and compliment bits available).

The response unit is responsible for selecting one or several matching words. It comprises
several scratehpad registers and a priority circuit for selecting the first matching word. Depending
on program control, the output of the response unit is routed either to the output unit for outputting
the result or fed back to the selection unit for further processing of the matching words. All units
are under the supervision of a conventional control unit with conventional storage (eg., a local
RAM) which stores the program instruction. Its role is to load/unload the storage array, set/rest
various registers such as the I, 1~., G and L of the match/compare unit, enable/dlsable memory
words, perform conditional instructions, monitor the MD bit, and test program termination. In
what follows, we describe the implementation of several parallel algorithms on the OCAPP in order
to show its use and processing benefits.

Table 1: Formulation of the interrogation register

I Search bit cj I Mask bit m i I Interrogation bits I i l j

0 0 01
1 0 10
0 1 11
1 1 11 (no comparison is performed at this bit position)

341

, i, q

÷

2-D array of optical data
(n x m data bits)

1-D vector of optical data
(n x I data bits)

O U T P U T

U N I T

Figure I : A schematic organizaUon of the proposed optical
content-addressable parallel processor : OCAPP.

3 P a r a l l e l Sea rch A l g o r i t h m s on O C A P P

We classify search operations as basic and compound operations. A basic search operation is one
which can be completed in one sweep over all the bit-slices of the storage array. It does not involve
any feedback processing. A compound search operation requires a feedback from the response unit
to the selection unit. As a consequence, it takes more than one sweep over the storage array to
complete. Under basic search operations, we group the following operations:

s Equivalence Search: The equality search, the not-equal-to search, and the similarity search
(search for a match within a masked field).

• Threshold Search: The smaller-than, the not-smaller-than, the greater-than, and the not-
greater-than searches.

• Extrcma Search: The greatest value search, and the smallest value search.

Compound search operations can be implemented in a series of basic search operations. Under the
compound search, we group the following operations:

• Adjacency Search: Next-above search, and next-below search.

• Between-Limits Search: Search for words z, between two limits X and Y (X < Y): a)
X < z < Y , b) X < z < Y , c) X < z < Y , andd) X < z < Y .

342

/ -

WORD SELECT LOGIC
/ nxm ~DATA BITS

//."'-

Figure 2 : Organization of the selection unit.

I DATA FROM ~
I SELECTION
I UNIT

b/
, i

COMPARISONI ~i lil il
LOG,O i i ~1

~ ;:t, : REGISTER

I MATCH DETECTOR BIT

Figure 3 : Organization of the match/compare unit.

343

• Outside-Limits Search: Search for words z, outside two limits X and Y (X < Y): a) X <
z or z >__ Y, b) X > z o r z > Y, c) X >__ z or z > Y, and d) X > z or z > Y.

• Ordered Retrievals (sorting}: Ascending order retrieval, and descending order retrieval.

Of course many more compound search operations can be formulated using the basic search oper-
ations. The above search operations are the most frequently used in information retrieval applica-
tions.

3 .1 P a r a l l e l A l g o r i t h m s f o r B a s i c S e a r c h O p e r a t i o n s o n O C A P P

In what follows, we denote a memory word as W/= (toi,~toim_l... wil) where wlj is the jth bit
cell of the word W¢. We denote the jth bit-slice by Bj = (w~jw2.i... w,,.i), which is made up of the
jth bit of every word in the storage array. The interrogation and response registers are denoted by
I = I~I,, ,_1... 11, and R = R1R2. . . R~ respectively. The comparand word (search argument) and
the mask register words are denoted by C = (c~c~_l . . . cl), and M = (mmmm-i . . . ml).

3.1.1 Equivalence Search

In this type of search, the memory is partitioned according to the magnitude of the search word
C into two sets, namely, words which are equal to C and words which are not. The equality and
masked search operations can be implemented by a bitwise match. For equality match all the bits
of the search word need to be matched, whereas for the masked search, only a subset of the bits of
the search word is compared with the respective bits of the memory words. For mj -- 0 means that
cj is not masked, while mj = 1 means cj is masked. These two search modes can be combined as
shown in Table 1. Given an interrogation word I , a bit match denoted by bij on the jth cell of the
ith word is given by:

bij = (6 A wij) V (6 A ttTij) (equivalence) (1)

where the symbols A, V, and the bar (-) denote the logical AND, logical OR. and logical NOT
respectively. Now the exact matching of memory word Wi with interrogation vector I requires the
logical product of the bits bij for j = 1, . . . ,m, therefore:

j--m
R~ = A b~j = b~,, ^ b~.,_l ^ . . . ^ b , . (2)

j=l

where A denotes a logical AND over all bits. Tile above equation indicates that matching words
in memory will be flagged by having their corresponding R. bit set to one, and all mismatches will
have their I~ bits set to zero. F.~uations 1 and 2 are space-invariant and can be implemented in
blt-parallel as well as word-parallel fashion. Therefore, all Iks for i = 1, . . . ,n, are computed at the
same time with a single access to the storage array.

Equivalence Search Algor i thm:

1) Initialization:

a) Load I (this will depend on the search word and the masking condition);

b) Clear R. (dear all bits of the R register);

2) Perform comparison:

a) b~j = (Ij ^ w~j) V (~ ^ ,~j) ;
j.mm b) R; = Ai=l blj for i = 1, . . . ,n. (R/= 1 if and only if W~ matches I).

344

3.1.2 T h r e s h o l d Sea rch

This mode of search partitions the memory according to the magnitude of the search word C
into three sets, namely words which are equal to C, words which are less than C, and words which
are greater than C. The result of the search is stored in the three registers of the response unit,
namely R, G and L. Initially, all memory words are made active by making control registers RGL
= 100. The memory is scanned from the most significant to the least significant bit position by
enabling a single bit-slice at a time. When the comparand bit c# is one, we select all active memory
words with wq = 0 as "less than" by setting their corresponding bit position RGL = 001. These
words are then disabled from further comparisons (the disabling process will be explained later).
Similarly, when cj = 0, we select all active memory words with wlj = 1 as "greater than" by setting
their corresponding bit position RGL = 010, and then disable them from further processing. At the
end of the last bit position, words still in the state rtGL = 100 are equal to the comparand, words
in the state RGL = 010 are greater than the comparand, and words in the state RGL = 001 are less
than the comparand. It is important to note that, even though we are scanning the memory from
most significant bit to least significant bit, the search process can be terminated any time there are
no matching words at a given bit position (Ri = 0 for all i = 1 , . . . ,n). Such a condition is easily
detectable by checking the MD bit. The detailed algorithm follows.

T h r e s h o l d Sea rch A l g o r i t h m :

1) Initialization:

a) Load I (depending on the search word and masking condition);

b) Enable memory words;

c) Set R, clear G, clear L, set j = m (the variable j is used by the control unit to scan
the storage array);

2) Perform Magnitude Search at bit-slice j:

a) Ri = A~=lJ=m blj, Gi = Ai=lJ=m Ii A wlj,- L~ = Aj=IJ='~ Is- A wlj for t" = 1 , . . . ,n (note that only tile
enabled bit-slice j determines the values of R/, Gi and Lh all other bit-slices are disabled
at this time, and therefore have no influence);

b) Test if MD = 1 (is there any words that match the I register at the current bit position
J ?);

3) I f M D = I do:

a) Disable memory words whose corresponding bits in R are zero (memory words Wi with
]?q = 0 have already been decided on);

b) Decrement j: j ~ j - 1, and test i f j = 07;

c) If j ~ 0, go to step 2;

d) If j = 0, go to step 4;

4) I f (MD = O) or (j = 0), then we are done and the search result is reported in R, G, and L.

The following example illustrates the algorithm for a magnitude search of 7 words, each 5 bits

long:

E~ample 1: Threshold Search

Search word, S : 10110
Mask word: 00000
I register: 10110 (effective word search)

345

Memory word i Wi ' State of RGL at the end of the jth iteration

j = 5 j = 4 j = 3 j = 2 j = l (l a s t i t e r a t i o n)
1 10111 100 100 100 100 010 (W I > S)
2 11000 100 010 010 010 010 (W~> S)
3 10010 100 100 001 001 001 (W3< S)
4 10110 100 100 100 I00 100 (W,= S)
5 10101 100 100 100 0.01 001 (W s < S)
6 01101 001 001 001 001 001 (W e < S)
7 11101 100 010 010 010 010 (WT> S)

3.1.3 E x t r e m a Search

This type of search refers to finding the maximum (or minimum) of a set of (or all) memory
words. We consider first the search for maximum.

A. Maximum Search

To find the maximum, we scan memory words from the most to the least significant bit positions.
As we scan the bit-slices, we determine if any of the enabled words have a one in the current bit
position. If we find some, we disable all those words that do not have a one in this position. If
none of the words at the current position possess a one, we do nothing. At any given time, all
remaining candidates are equal as far as we have examined them, because for every bit position
either everybody had a zero in that bit position, or whenever some words have ones, we disable the
ones with zeros. Therefore, at bit position j , enabled words with w~j = 1 are larger than enabled
words with wij = 0. Since we are seeking the maximum, we disable the ones with wlj = 0. This
process is repeated until we exhaust all bit positions at which time the maximum word will be
indicated by Ri = 1.

A l g o r i t h m for F ind ing the M a x i m u m :

1) h~itialization:

a) Load I : I ~ 11. . . 11 (I is loaded with all bits set to one);

b) Clear MD, set j - m;

c) Enable memory words, and s e t /~ = 1 for i = 1 , . . . ,n;

2) Perform equivalence search at bit-slice j :

3) Test i f M D = 1 (is there any words with a one in the current bit position j 7);

4) / f M D = I do:

a) Disable all words which do not have a one in the current bit position (these words are
indicated by R~ = 0).

b) Clear t2. and MD;

c) Go to step 5;

5) Decrementj : j ~ - j - 1, and test i f j = 07;

a) If j ~ 0, go to step 2;

b) If j = 0, output maximum value indicated b y / ~ = 1.

B. Minimum Search

The search for the minimum is very similar to the search for the maximum except that the I
register is initially loaded with zeros and that if any enabled word has a zero in the current bit

346

position (There exists a memory word We such that its corresponding/?~ = 1), we disable the words
with a one in the current bit position (Ri = 0). These words are bound to be greater than the
minimum sought. The process is repeated until we exhaust all bits of the enabled words. Tim
minimum value will also be indicated by a one in register R.

3.2 Parallel Algorithms for Compound Search Operations on OCAPP

Compound search operations such as the ones stated earlier can not be economically imple-
mented by a single sweep over the memory words. We therefore choose to implement such opera-
tions as a series of basic searches. The rationale is to keep the architecture as simple as possible,
and therefore making it highly amenable to optical implementation. Of course speed improvements
can be gained by implementing these search operations as basic search, but the amount of logic
circuits may be extensive.

3.2.1 Double Limits Search (Between and Outside Limits)

Given two numbers called HIGH and LOW, the double limits search consists of finding those
words that are between this limits and/or words that are outside these limits. This gives rise to
eight different searches which can be accomplished in a very similar manner. Let us consider the
between limit search. Given the two numbers HIGII and LOW, we wish to find those words that
are greater than LOW but less than IIIGH namely, find all W~ such that LOW < W~ < HIGH.
We can accomplish this search by using the magnitude comparison search as follows. First, ~ve
determine the words that are less than the comparand HIGH. These words will be indicated by a
one in the L register. We then disable all other words except the ones that are less than HIGH,
and perform another threshold search using the comparand LOW. After the second search, words
that are less than HIGH and greater than LOW will be marked with a one in the O register, which
could be routed to the output unit for outputting the search result.

3.2.2 A d j a c e n c y Sea rch

To find tlle word that is next-above the comparand (the smallest word larger than the com-
parand), we search for all words that are larger than the comparand and then select their minimum.
Similarly, to find the word that is next-below tile comparand (the largest word smaller than the
comparand), we search for all words less than the comparand and select their maximum. The search
for the largest word smaller that the comparand (next-below search) can be carried out by a similar
algorithm as the one above. In this case, step two of the next-above algorithm is replaced by a
search for words that are less than the comparand, and step four is replaced by a maximum search.

3.2.3 Ordered Retrieval (Sorting)

The sorting or ordered retrieval of a set of data can be achieved by performing the extrema
search repeatedly until all the data are retrieved. For tile ascending order retrieval, we enable the
memory words to be sorted, and determine their minimum (using the minimum search operation).
We output tile obtained minimum value and disable it from the storage array. We repeat these
steps until we retrieve (in ascending order) all the enabled words. For descending order retrieval,
we select the maximum value at each step.

347

4 O p t i c a l I m p l e m e n t a t i o n

In this section we identify the fundamental and basic operations required to implement the
optical architecture, and describe possible optical components for achieving them. Detailed practical
implementation issues and experimental setups will be the subject of a different publication.

4.1 Basic Operations and Hardware Components Required

An analysis of the conceptual OCAPP, the basic operations, and the algorithms reveals that in
order to optically implement OCAPP, the following functions are required: (1) data is optical and
must be available in dual-rail format (both the value and its complement is required); (2) parallel
access for writing into and reading from the storage array as well as the various control registers;
(3) disabling/enabling a memory word (or several memory words) based on certain criteria; (4)
logical AND, and logical OR; (5) space-invariant optical transmission of information (one-to-one
connections); (6) spreading a single bit (actually two bits due to the dual-rall format) of information
to several spatial locations (one-to-many connection); (7) combining several bits of information into
a single spatial location (many-to-one connection); and (8) dynamic routing of information (e.g.,
routing contents of register R, to selection unit, or output unit, or response unit depending on the
algorithm). The optical components required to accomplish the above operations can be divided into
(1) logic elements, (2) storage elements, and (3) information transfer elements (or interconnects).

For optical logic and storage, many approaches are being investigated. One approach is the
adaptation of the spatial light modulator (SLM) technology to optical logic[10]. Another approach
for realizing optical components capable of performing logic, is to optimize the device from the
beginning for digital operations. The recent emergence of the quantum-weU self-electrooptic effect
device (SEED) and its derivatives (S-SEED, T-SEED, D-SEED) is one such a product[Ill. The
SEED devices can be used to realize both logic operations such as NOR., OR, AND, NAND, etc.
as well as for storage such as S-R latches[Ill. Optical resonators are another family under this
approach intended for optical logic[12]. Two similar bistable devices, etalons, and interference filters
both based on the Fabry-Perot resonator are being actively pursued[13, 12]. All data movements
and information transfer in OCAPP are space-invaxiant which may render their implementation
easier. Classical optical components such as lenses, mirrors, beam splitters, holographic deflectors,
and delay elements are most likely to be used for this purpose[14]. In addition, halfwave plates,
shutters, and masks may be used for dynamic routing.

4.2 A Modular Implementation of OCAPP

In this paper, we present a modest design example of OCAPP, using existing optical hardware
in order to highlight the potential implementation issues of a practicable realization. The imple-
mentation of this first version will make use of the SEED device operating as a NOR.gate for
optical logic, and of the S-SEED device operating as a S-R latch for storage[Ill. The NOR gate
is preferable to any other form of thresholding nonlinearity because it only requires distinguishing
between the state where no light comes in and the state where light come in. Thus the NOR. gate
requires an SNR better than one only. In addition, a NOR function constitutes a complete logic
set capable of implementing any boolean or arithmetic function[15]. The family of SEED devices
seem to be easy to use, capable of high speed, low energy operation, and can be fabricated in 2-D
format. Space-invaxiant optical interconnects, dynamic masking components, and beam spreading
and combining devices axe assumed for data routing[16].

The S-SEED device has two inputs, S, R, and two outputs Q and Q. The state of the device
is set by a pair of unequal signal beams labeled S (for setting the output Q = 1, Q -- 0) and R
(for resetting the output Q = 0, Q = 1). Tile device is set (Q = 1) when the power incident on

348

the S input is much higher than the power incident on the R input. The state of the device is read
by applying two equal-power (clock signal) beams to both inputs. During the setting of the device,
the clock beams must be low, compared to the signal beams. The device holds its state when no
clock signal is incident. Thus the device can operate as a latch. Moreover, during the application of
the clock signal (the reading process) the state of the device is unaltered. As described earlier, the
optical processor can be constructed from several units: the selection unit, the match/compare unit,
the response unit, the output unit, and the control unit. In what follows, we describe the optical
implementation (architectural rather than experimental setup) of each of these units. Moreover, the
details in the routing and imaging paths such as lenses, holographic elements, masks, beam splitters,
and polarizers have been omitted in this version to assist the reader's conceptual understanding of
these configurations.

4 .3 T h e O p t i c a l S e l e c t i o n U n i t

The optical selection unit of Fig.4 is composed of a storage array which consists of a 2-D n x m
array of clocked S-SEED devices (each entry in the array at position i , j has two incoming bits S,
R and two outgoing bits wli, ~ j) , a n x 1 word register A which serves at setting and resetting
data words in the storage array, a 1 x (m + 1)) bit-slice loading register B for loading a single
bit-slice of the storage array. The first bit B0 and its complement/~o are called set-E and reset-E
respectively, since they are used for setting and resetting the n x 1 enable register E which is used
for the matching process (to be explained below). Memory words are disabled through the n x I
NOR gate array, representing the D register. The D register can be loaded from R, G or L registers.
In addition, the E register can also be reset from the priority register P of the response unit (to be
explained below).

A. Writing a Word/Bit-Slice into the Storage Array:

The storage array is assumed to be loaded in paralld at the beginning of the program. During
program execution, the contents of the storage array can be altered by the use of the A and the B
registers. To write a word in the storage array, say at word position i, the word is first written in
the fllp-flops of the B register. In the next clock cycle, the dock signals of B bits are pulsed high,
and the contents of the B register is spread out vertically such that each bit B i impinges on the set
ports of the j-th column of the storage array. Next, bit Ai of A (corresponding to word position i) is
pulsed high and spread out horizontally such that it impinges on the set/reset ports of the i-th row
of the storage array. A one bit is written in bit position wlj of the storage array if and only if a high
Ai and a high B./coincide at the set port of bit wij. Similarly, a zero bit is written in bit position
wli, if and only if a high Ai and a high B i coincide at the reset port of w~ i. This of course assumes
that the set/reset thresholds of the S-SEED devices are so designed. Similar operations take place
for writing a bit-slice in the j-th column of the storage array, with the exception of interchanging
the roles of the B and A registers.

B. Enabling/Disabling Memory Words:
By enabling a memory word W/, it is meant including it in the matching process. Similarly, by

disabling it, it is meant excluding it from further matching operations. To allow a memory word
Wi in participating in the matching process, its corresponding bit//?~ in the E register must be
set high. Similarly, to disallow a memory word wl from participating in the matching process, its
corresponding bit El in the E register must be made low. To enable/disable the entire memory
words, the set-E/reset-E bits (Bo/Bo) are spread out vertically and broadcast to all the set/reset
ports of E. To selectively disable memory words whose R, or O or L bits are not asserted (R= 0,
or G = 0 or L = 0), requires the routing of the appropriate register (R, G, or L) to the NOR gate
array D. The output of D (which represents the emnplement of the routed register) is imaged onto
the reset ports of register E. For example, to disable memory words whose R bits are not asserted
(R = 0) from further matdfing operations, first contents of R is routed to D, which in turn image

349

>
v -
At

!

E
D

> / / . E,

; ' 1, , . % 1

/ " r. E, !

f m
~ S-Seed latches

sl~ ~ S-Seed device acting B
-- as a clocked S-R latch r i j wl~

Optical NOR gate

Figure 4 : Optical Implementation of the selection unit.

E
Io !

%%,%%

2-D optical
data from o1:
selection un

Figure 5 : optical Implementation of the match/compare unit. Detector bit

350

the complement of R onto the reset ports of E. Thus a low bit R~ of the R register will disable
the i-th bit of the E register, which in turn disables memory word W~ from participating in further
comparisons. The role of the E register in the match operation is explained next.

4.4 The Optical Match/Compare Unit

This unit performs exact match, and magnitude comparison searches between the interrogation
register I and words of the storage array. As shown in Fig.5, It contains several SEED arrays
operating as NOR gate arrays, and three registers, namely the response register, It, the greater
than register G, and the less than register L. Parallel comparison takes place between memory
words emanating from the storage array and the interrogation register I. A match at bit w~ i is
detected by an exclusive-and principle as indicated in Eq.l. For that, register I needs to be spread
out vertically so that each bit Ij impinges on one port of the NOR gates of the j-th column of the
array, while data bits w~i impinge on the second port of the NOR gates of the same j-th column.
Matches between I i and wlj are reported in blt Ri of the tt register. Otherwise, the G and L
registers indicate the relative magnitude. The contents of R , G, and L are routed to the response
unit as well as fed back to the selection unit.

As stated above, the enable register E determines whether or not a memory word participates
• in the matching process. Thus, the word match condition of Eq.2 is rewritten as follows:

/~ = [(I~+1 A E,) Y (I•+1 A/~,)] A 1(I~ ^ w,m) V (f~ A w~,)]A,... ,At(/1 A wil) V (/~ h ~1)] (3)

where bit I~+1 is set to one (I~+~ = 0) during a match operation. It can be seen from Eq.3 that a
memory word W/will participate in the match process if and only if its enable bit El is set to one.
The R register bits are logically OILed to form the Match Detector (MD) bit. The MD flip-flop
indicates if there is any match between I and memory words.

The optical match/compare unit of Fig.5 consists of a single interrogation register I, and therefore
allows comparison of one search argument with the words stored in the storage array. However,
using the multi-dimensionality of optical systems, this unit can be extended to perform multiple
search operations in a single step. That is, several search arguments axe compared simultaneously
with the words of the storage array. An extended MIMD match/compare unit would have a k × m
two-dlmensional array of k search arguments, a two-dimenslonal storage array of n words each m
hits long, and a m × k two-dimensional response array as shown in Fig.6. Each response register
R4 (l = 1,...,/¢) would indicate the match between interrogation register It (1 -- 1, . . . ,k) and the
words of the storage array. The two-dimenslonal match operation can be thought of as an optical
binary matrlx-matrix multiplication which can be implemented using several optical techniques [17].

4.5 The Optical Response Unit

The response unit, contains a combinational priority circuit, and a priority register P for indicat-
ing the first matching word in memory (It may also contain few scratchpad registers for temporary
storage). The priority circuit allows only the first responder (the first memory word W~ whose R~ is
one) to pass to the priority register P. The priority circuit can be implemented using several stages
of the NOR gate arrays in the form of a binary tree with space-invarlant interconnectlons between
them[18]. Contents of the P register are routed to tile output unit, and also fed back to the selection
unit.

4.6 The Optical Output Unit

The output unit outputs memory word whose corresponding bit in the priority register P, R., G
or L is sct to one (Fig.7). These latter registers are routed to a n x 1 NOR gate array, denotrd

351

by N in Fig.7, whose sole purpose is to invert their values. Each bit N~ of N is logically NORed
with memory word Wi using a 2-D NOR gate array. Next, each column of the NOR gate array is
logically ORed to form output bit Oi of the output register. This latter could be a photosensitive
device which only detects the presence of light and outputs electrical signals, or a 1-D array of
SEED devices acting as OK gates, and outputting optical signals. It should be noted that parallel
readout of selected memory words is also achievable by replacing P with a 2-D output device and
diminating the OR function.

4 . 7 T h e C o n t r o l U n i t

OCAPP is under the control of a memory control unit which comprises a local memory for
storing programs and a program sequencer for executing instructions that control the optical hard-
ware such as the S-R latches, the NOR gate arrays, the routing shutters, and splitters, etc. The
instruction set is composed of conventional assignment and conditional statements, and additional
instructions required to implement associative parallel processing. This includes data movement
between units, comparison operations, memory loading and unloading, monitoring the MD bit, etc.
These additional instructions are very few in nature and are derived from the required fundamental
operations described above. It should be noted that application programs for OCAPP can be writ-
ten in conventional high-level languages such as Pascal or C, with few calls to external procedures
which support parallel associative processing.

4 .8 E s t i m a t e d E x e c u t i o n t i m e

An exact performance analysis of the proposed OCAPP including cost and power budget break-
down is currently not feasible due to the lack of optical S-R latches and thresholding devices with
reasonable size (e.g., 500 x 500 gates), low operating energy, and fast response time. However,
major efforts are being pursued[lO, 11] in developing these devices in larger sizes. These efforts
will soon culminate in the required devices and components for OCAPP as well as for other digital
optical computing models.

We therefore try to theoretically estimate the execution time in terms of gate delay of the various
basic search and arithmetic algorithms presented. This time does not include memory loading and
unloading. We assume that the response times of the S-It latches (S-SEED) and that of the NOR
gate arrays (SEED) axe comparable and are both equal to T,, and Tp is light propagation time
through ttle processing loop (from the selection unit and back). It is assumed that the reading of
memory words from the storage array and the I register is done at the same time, and takes one
gate delay T,; enabling/disabling of memory words is achieved in one gate delay; testing of the MD
bit takes one gate delay, and the priority circuit takes log 2 n gate delays, where n is the number of
words participating in the matching process.

Table 2 presents the estimated execution time of the algorithms presented. It can be seen that
the execution time in equivalence search is a constant factor, and independent of the number of
words in memory. The time in threshold search, double limits search, adjacency search, and extrema
search, ordered retrieval (minimum time only) is proportional to the precision (number of bits) of
the operands, and is independent of the number of words involved in the operation.

Note that the availability of the Match Detector (MD) bit provides major speed improvements
to the above algorithms, in that certain conditions to terminate the computation as early as possible
can be easily detected. Take for example, the threshold search algorithm. After the first comparison
operation, if there are no words that match the comparand at that bit position (a condition that
can be easily be detected by checking the MD bit), then all the words have been decided on in only
4T, delay time, and the result is obtained in a much shorter time. The same considerations take
place for double limits search, and adjacency search.

Is

352

~R~

h storage array n x k response army
k x n interrogation array

Register R, indicates the match/mismatch of memory words with Interrogation registers h(for I=1 to k).

Figure 6 : Optical Implementation of a 2-D match/compare unit : the Interrogation as
well as the response registers of figure 5 are replaced by two-dimensional
arrays of search arguments and response registers respectively.

N

ut
;ter

Figure 7 : Optical implementation of the output uniL

353

Table 2: Estimated execution tlme of the parallel algorithms on OCAPP

Search Algorithm Minimun Execution Time Maximum Execution Time

Equivalence Search

Threshold Search

Minimum Search

Maximum Search

Double Limits Search

Adjacency Search

Ordered Retrieval Search

3T~

4T,

(61'. + T~) × m

(6T0 + T.) × m

10T. + 2T.

5To + T, + (6T. + Tp) × m

13T0

I (ST0 + T,) × m

I (6To + T,) × m

I (6To + T,) × , ,

[T . + T , + 2 C S T . + T ,) × m

[T. + T~ + (l lT. + 2Tp) × m

((6T. + T,) x m + T. + 3T.) I ((6T. + T,) x m + (log2,)T.+
.] Tp + 3T.) x n

The parameters rn and n in the above table represent the word length and the number of
operands respectively.

5 C o n c l u s i o n s

CAM-based processing has been argued to be the natural solution for non-numerical information
processing applications. Unfortunately, the implementation requirements of these architectures
using conventional electronic technology have been very cost prohibitive. This paper presented the
principles and initial design concepts of an CAM.based parallel processing architecture that matches
well with optics advantages, and therefore is highly amenable to optical implementation. The
architecture relies heavily on the use of space-invarlant interconnections, optical signal broadcasting
and funneling (combining), and the simultaneous application of the same operation to many data
points (SIMD mode of computing). The motivations behind this is the ease with which these
operations can be realized with optics. A representative set of search algorithms have been presented
to show the use and merits of tile architecture. Tllese algorithms are key components which occur
in large computing tasks. It is important to note that these fundamental search algorithms are
implemented on the optical architecture with an execution time independent of the problem size
(the number of words to be processed). This indicates tllat the architecture would be best suited to
applications where the number of data sets to be operated on is high. Some of the applications being
investigated are: (1) real-time information retrieval, (2) database management, (3) knowledge-base
and expert system implementation, and (4) llst and string processing.

We presented a preliminary and simple version of an optical implementation of OCAPP. This
version is only meant to show the feasibility of the architecture with existing optical devices. No
optimization attempts were made. Nevertheless, this preliminary version reveals several key desig n
issues that will determine the physical realization of sudl an optical architecture. Even if we assume
the availability of optical nonlinear devices (latches, and NOR gates) in large sizes, the effective
memory size will be critically determined by the beam spreading/combining optics, the contrast ratio
and the fan-in/fan-out factors of the logic elements to be used. These practical implementations
issues will be fully detailed in a follow-up paper.

354

R e f e r e n c e s

[1] K. Hwang and D. Degroot, Parallel Processing for Supercomputers and Artificial Intelligence,
McGraw-Hill, New York, 1988.

[2] T. Kohonen, Content-addressable memories, Springer-Verlag, 1980.

[3] A. A. Sawchuk and T. C. Stand, "Digital optical computing," Proceedings of The IEEE, vol.
72, no. 7, pp. 758-779, July 1984.

[4] W. T. Cathey, K. Wagner, and W. J. Micell, "Digital computing with optics," Proceedgins of
the IEEE, vol. 77, pp. 1558 - 1572, Oct. 1989.

[5] A. Louri, "A parallel architecture and algorithms for optical computing," Optics Communica-
tions, vol. 72, no. 1, pp. 27 - 37, July 1, 1989.

[6] A. Louri, "3-D optical architecture and data-parallel algorithms for massively parallel comput-
ing," IEEE MICRO, April 1991.

[7] B. K. Jenkins, P. Chavel, IL Forchheimer, A. A. Sawchuk, and T. C. Strand, UArchitectural
implications of a digital optical processor," Applied Optics, vol. 23, no. 19, , October 1984.

[8] J. W. Goodman, F. J. Leonberger, S. Y. Kung, and R. A. Athale, "Optical interconnections
for VLSI systems," Proceedings of the IEEE, vol. 72, no. 7, pp. 850-866, July 1984.

[9] P. B. Berra, A. Ghafoor, M. Guizani, S. J. Marcinkowski, and P. A. Mitkas, "Optics and
supercomputing," Proceedings of the IEEE, vol. 77, pp. 1797 - 1815, Dec. 1989.

[10] J. A. Neff, R. A. Athale, and S. H. Lee, "Two-dimenslonal spatial light modulators: a tutorial,"
Proceedings of the IEEE, vol. 78, pp. 836 - 855, May I990.

[11] A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F.
Chirovsky, '~Symmetrlc self-electrooptic effect device: optical set-reset latch, differential logic
gate, and differential modulator/detector," IEEE J. of Quantum Elect.ton., vol. 25, pp. 1928 -
1936, Aug. 1989.

[12] J. L. Jewell, M. C. Rushford, and H. M. Gibbs, "Use of a single non-llnear Fabry-Perot etalon
as optical logic gate," Appl. Phys. Left., vol. 44, pp. 172 - 174, Jan. 1984.

[13] S. D. Smith, J. G. H. Mathew, M. R. Taghizadeth, A. C. Walker, B. S. Wherret, and A. Hendry,
"Room temprature, visible wavelength optical blstability in ZnSe interference filters," Optics
Communications, vol. 51, pp. 357 - 362, Oct. 1984.

[14] A. W. Lohmann, uWhat classical optics can do for the digital optical computer," Applied
Optics, vol. 25, no. 10, pp. 1543 - 1549, 15 May 1986.

[15] A. Louri and K. Hwang, ~A bit-plane architecture for optical computing with 2-d symbolic
substitution algorithms," In Proc. I5th lnt'i. Syrup. on Computer Arch., Honolulu, Hawaii,
May 30 - June 4, 1988.

[16] K. Hwang and A. Louri, "Optical multiplication and division using modifed slgned-digit sym-
bolic substitution," Optical Engineering, Special issue on Optical Computing, vol. 28, no. 4,
pp. 364 - 373, April 1989.

[17] K. A. Athale, "Optical matrix processors," In Proc. SPIE, Optical and ltybrld Computing, vol.
634, pp. 96 - 111, 1986.

[18] C. C. Foster, "Determination of priority in a.qsociative memories," IEEE Transactions on Com-
puters, vol. C-17, pp. 788 - 789, Aug. 1968.

