
A Symbolic Substitution Based Parallel Architecture and Algorithms for
High-speed Parallel Processing

Ahmed Louri
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, Arizona 85721

Abstract

A new parallel architecture that is amenable to
optical implementation is presented for massively
data-parallel computing. The architecture is an
SIMD model that exploits spatial parallelism and
processes 2-D binary images as fundamental com-
putational entities. Processing is based on a new
technique called symbolic substitution logic. A hi-
erarchical mapping technique is presented for de-
signing data-parallel algorithms and mapping them
onto the optical architecture. The mapping of sev-
eral numerical algorithms onto the architecture is
presented. Implementation issues as well as per-
formance analysis of the optical system are also
considered.

1 Introduction

Processing large amounts of data at high-speed has
been increasingly required as progress in science
and technology advances. This is manifested in
data-intensive applications such as signal and im-
age processing, weather forcasting and modeling,
remote sensing among many others[l]. These ap-
plications exhibit a high degree of data-parallelism
in which concurrency occurs naturally in structured
data. To achieve the computational rates equiva-
lent to trillions of operations per second that will be
required for data-intensive applications, improve-
ments will have to be made on all fronts of com-
puter system design. With current technology, fast
circuit and packaging techniques will improve per-
formance by reducing the basic cycle time of con-
ventional computing systems. However, to reach
the rate of one trillion operations per second, would

Permission to copy without fee all or part of this maternal is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that the copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-348-5/90/0002/0173 $1 SO 173

require a cycle time lower than a picosecond! This
can not be expected from advances in electronic
technology alone, because of fundamental physical
limitations and therefore further speed-up will have
to come from parallelism.

Optics has many unique features that can be
exploited for high-speed parallel processing (see for
example [2]). Optical systems are inherently paral-
lel and multi-dimensional. The rate at which data
is processed through an optical processing system
is essentially limited by the rate at which data
is placed in the system and detected at the out-
put. This implies higher throughput and process-
ing rates than current systems. Transmission of
information via photons requires no physical con-
ducting material, but relies on low-loss dielectric
material for wave guide propagation or free space.
Therefore higher temporal and spatial bandwidths
can be obtained. This paper presents a hybrid
parallel optical computing architecture that com-
bines the high-speed and parallelism of optics with
the programming flexibility of electronics for data-
intensive computing. In addition, a technique for
mapping parallel algorithms onto the architecture
is presented.

2 The 3-D Optical Architecture

Figure 1 depicts a block diagram of the basic com-
ponents of the optical architecture. Unlike con-
ventional computers that manipulate individual O’s
and l’s as basic computational objects, the optical
architecture manipulates bit planes as basic com-
putational entities. Each bit plane i corresponds to
a weight factor 2i in the binary representation. Up
to 3 bit planes can be processed simultaneously.
For images of n x n elements, it follows that up
to 3n2 operations are performed concurrently. The
heart of the architecture is the processing array.
Locally, this array can be viewed as a bit-serial or
a bit-slice processor, since it performs one logical
operation, on one, two or three single-bit operands.

Globally, it can be viewed as a plane-parallel pro-
cessor, since it simultaneously performs the same
operation on a large set of operands encoded as
bit planes. This bit-serial processing allows flex-
ible data formats and almost unlimited precision.
Optical interconnects are used to move the images
around the system. The architecture is conceived
to be built with optical hardware that manipulates
entire images simultaneously both at I/O and pro-
cessing, so that the 2-D parallelism is sustained
throughout various stages of the computation.

2.1 The Processing Array

The processing array operates in the SIMD (sin-
gle instruction multiple data) mode of computa-
tion, where the same operation is applied to all the
data entries. In the proposed system, processing is
based on the optical symbolic substitution logic[7]
(SSL) which will be described in detail later. The
processing unit is equipped with 3 fundamental op-
erators: a logical NOT which inverts all the entries
of an input plane, a logical AND , denoted by f&
that performs the logical and of the overlapping
bits of two bit planes, and a full ADD, denoted by
l+J, that performs the full addition of the overlap-
ping bits of the three input planes. By overlap-
ping bits, it is meant bits with the same Cartesian
coordinates (i, j) in the input planes. These op-
erators constitute a complete arithmetic and logic
set capable of computing any arithmetic or logic
function.

2.2 Input/Output Data Routing

The data represented as bit planes is fed to the
system through three input planes, namely A-, B-,
and C-plane as shown in Fig.1. Depending on the
fundamental operator needed at a given computa-
tional step, the input combiner performs three data
movement functions: for the logical NOT, it simply
latches the relevant input plane to the processing
unit. For the logical AND, the data movement re-
quired is called the 2-O perfect shufie. This func-
tion performs the shuffling of the row position, i,
of the data such that the overlapping bits from the
two planes become spatially adjacent. This func-
tion does not affect the column position, j. The
data movement required for the full ADD operator
is called the 2-O 3-sftufsle. This function is similar
to the 2-D shuffle function except that it performs
a 3-way shuffling of the rows of the three input
planes.

174

Data Memory Unit

-: Data path

.) : conmi path

Figure 1: A Block diagram of a parallel optical architecture

The output router is responsible for directing
the processed data to its appropriate destination.
It also performs three data movement functions,
namely, feeding back to the input combiner, a par-
tial result such as a carry bit plane resulting from
a full ADD operation, sending a final result to the
data memory for storage, and shifting the output
either in the X or Y direction by a variable num-
ber of pixels. This shift enables communication
between pixels in the plane. By means of this spa-
tial shifting, data can be moved among widely and
at arbitrarily separated locations in the plane.

2.3 2-D Symbolic Substitution Rules for
the Fundamental Operators

Symbolic substitution Logic[7] was introduced to
take advantage of the massive parallelism and ultra-
high speed in optics. In this method, information
is represented by optical patterns within a two-
dimensional binary image and operators are seen as
pattern transformation rules or substitution rules.
Computation proceeds in transforming these pat-
terns into other patterns. It consists of two pro-
cessing phases: a recognition phase where the pres-
ence of a specific pattern, called the search pattern,
is detected within a binary image and a substitu-
tion phase, where the present pattern is replaced
by another pattern, called the replacement pattern
according to a predefined substitution rule. All lo-
cations of the search pattern can be recognized in
parallel (if present in the input image). Similarly,
all replacements can be done in parallel.

In order to implement the fundamental oper-
ators (full ADD, logical AND, logical NOT) opti-
cally, we need an optical property to represent the
logical values 0 and 1. There are several properties
of light that can be used. These include light inten-
sity, polarization and optical signal phase. A pos-
sible representation is to encode the logical value
0 by two pixels dark-bright, and the logical value
1 by the inverse pattern, bright-dark as shown in
Fig. 2a. The dark and bright pixels represent in-
creasing levels of light intensity. In this coding
scheme, a logical value is represented not only by
the intensity of the bright pixel but also by its posi-
tion, which has some implementation advantages[8].

We derive the substitution rules for the fun-
damental operators (full ADD, logical NOT and
AND) from the truth-table specifications of each
operator. The input combinations of the truth-
tables represent the search patterns of the substi-
tution rules, while the table entries represent the
replacement patterns. The full ADD truth-table
manipulates three bits which gives rise to eight
combinations. If we put the bit symbols on top
of each other, we produce eight substitution rules.
Note that each bit is provided by a separate input
plane. These bits have the same coordinates i, j in
each plane. The grouping of bits of the same coor-
dinates is accomplished by the 2-D 3-shuffle func-
tion described earlier. Similarly, the logical AND
and NOT give rise to four and two substitution
rules respectively as shown in Fig. 2(b)-(d). A to-
tal of 14 substitution rules is needed to implement
the three fundamental operators.

In order to simultaneously process several sub-
stitution rules, the output of the input combiner
is replicated a number of times equating the num-
ber of substitution rules to be activated at a given
stage of computation. After the necessary substi-
tutions, the outputs of all the active substitution
rules are optically superimposed to form the pro-
cessed result[9]. The optical superimposition rep-
resents a logical OR of light patterns where a bright
pixel overwrites a dark pixel.

3 Mapping Data-Parallel Algo-
rit hms on the Optical Archi-
tecture

The optical architecture exploits data parallelism
at the hardware level, which enables it to process
an entire data plane at once. To enforce this ca-
pability at the algorithm design level, we view the

(1) Light intensity encoding of the blnrry values 0 and 1

(b) Optical SS rule for the full ADD operator

(c) Optical SS rule for the looical AND operator

r--.*-.'-...-.w-, ,..-.-..-.- I.... -*

(d) Optical 55 rule for the logical NOT operator

Figure 2: Optical symbolic substitution rules for the primitive
operators: full ADD, logical AND and logical NOT.

design and the mapping process as a hierarchi-
cal structure as shown in Fig. 3. At the highest
level of the hierarchy is the application we wish
to solve (i.e., signal and image processing, vision,
radar application, etc). The next level identifies
the various algorithms that can be used to com-
pute these applications. These include matrix alge-
bra, numerical transforms, solutions of partial dif-
ferential equation, etc. A further analysis of these
algorithms reveals that they share a common set
of high-level operations, which we call computing
substructures. These substructures can in turn be
decomposed into a set of fundamental operations
such as the full ADD, the logical AND and NOT.

The rationale behind this approach is that nu-
merous data-parallel algorithms share common fea-
tures such as localized operations, intensive compu-
tations, matrix operations and communication pat-
terns. The high-level computing substructures are
meant to capture these features. These substruc-
tures are directly mapped onto the hardware, and
parallel algorithms are built upon these constructs
so as to provide an efficient algorithm-architecture
mapping. Due to the short length of the paper, we
only focus on the implementation of a small sample
of these computing substructures.

175

In what follows, the boldface notation i.e. X, Y
etc. denotes a data plane (or a stack of bit planes),
and the italic notation (i.e. X, Y) designates a sin-
gle bit plane. The notation A (B or C) t X is in-
terpreted as data transfer from memory location X
to input plane A (B or C). The notation X + Y
denotes data transfer from memory location Y to
X. This involves loading Y, going through the pro-
cessing unit without any effect, and storing it in X.
The notation C c 0 is interpreted as loading the
C-plane with a zero bit plane (all entries are 0).
Loop indices and parameter calculations such as
“for i = a to b” should be interpreted as control
instructions that are executed by the control unit.

3.1 2-D Addition/Subtraction

This substructure refers to the addition (subtrac-
tion) of corresponding elements of two n x n data
planes X and Y of integers. The result is a data
plane S = (Sij }, where sij = xij f yij for i, j =
1 ,...,n. LetX=X,-*,X,-l,..., Xoanxnq-bit
planes, where q is the precision of the operands, X0
being the least significant and X,-1 being the most
significant, bit planes respectively. Similar consid-
erations take place for the data plane Y, the pro-
cedure is as follows:

Procedure 2-D Addition(X,Y)

begin
c-0;
for k := 0 to q - 1 do

AtXk;
B t Yk;

Sk,Cout + AuBBC’i,
sq + c;

end 2-D Addition

The notation Sk, Covt t Au B MCin., in the

by first forming the two’s complement of the sub-
trahend Y, then add it to X, using the 2-D addition
substructure.

3.2 2-D Multiplication

This substructure refers to the multiplication of
overlapping elements of two data planes. Let X
and Y be as described previously, then the prod-
uct P is a 2q-bit planes P = P2q-1P2g-2.. . PO,
where pij = Xij X Yij. This substructure uses the
logical AND and the full ADD operations. The
complete procedure is as follows:

Procedure 2-D Multiplication(X,Y)
begin

for k := 0 to 2q - 1 do
Pk +- 0;

for I := 0 to q - 1 do
c + 0;
for M := 0 to q - 1 do

A c X,;
B + Y,;
B+AAB;
A + P,+I;
P m+d’+ 4zJJBW’;

endfor;
P q+I + c

endfor;
end 2-D Multiplication

The time complexity of the 2-D multiplication
is O(q’), independent of the number of pairs to be
multiplied. Note that, unlike the conventional shift
and add multiplication algorithm, we did not need
to shift the previous partial product to generate
the current one. Instead, we start the addition a$
the bit plane corresponding to the amount of shift
required.

3.3 2-D Data Shifting
above procedure, designates the addition of bit planes
A and B together with the previous carry C’in; the
sum bit plane is to be stored in Sk and the resulting

We define two substructures for shifting a data
plane by a variable number of elements. The shift

carry bit plane, Covt, is routed back to input plane
C (Ci, and Gout represent the same physical loca-

considered here is the logical shift, where columns

tion). The whole process continues until X,-l and
(or rows) of OS enter the opposite direction of the
shift. Given two data planes P and X, we define

Y q-l are added and the sum So, Sl, . . . ,S, stored
as a stack of bit planes in the memory. The ad-

a horizontal shift substructure, denoted by H,(P),

dition of two q-bit planes is done in q iterations,
to be the data plane P shifted in the X-axis by o

regardless of the number of operands to be added.
columns (+Q for positive shift, and -cr for neg-
ative shift). The amount of shift a is applied to

Representation of numbers in two’s complement every bit plane Pi comprising the data plane P.
form allows 2-D subtraction by adding few addi- The shifted plane can be either stored in itself or
tional steps to the 2-D addition procedure. The in a different memory location, therefore the no-
pairwise subtaction of two data planes X,Y is done tation X + H,(P) is interpreted as shifting the

176

data plane P by o columns and storing it in X.
Similarly, we define the vertical shifting operation,
denoted by V,(P), to be the data plane P shifted
along the Y-axis by cr rows (+o for upward shift,
and --QI for downward shift).

3.4 Row/Column Accumulation

This refers to calculating the sum of all the ele-
ments of a data plane columnwise(rowwise). The
initial plane S is split horizontally/vertically using
the (vertical/horizontal) shift operations into two
planes X and Y, each with half the data entries
of S. Next, these planes are added using the 2-D
addition procedure. This split and add process is
repeated for log, n iterations, after which, the first
row of S holds the sums of all the rows of S. In other
word, the elements of each column are accumulated
and stored in the first entry of each column.

Procedure Row-Sum/Column-Sum(S,X,Y)
begin

for k = 1 to logzn do
(Y := n/2k;

g5mn)/2*);
(or X + H-p(S));

V+dX) (or H+LG));
y + V+,(S) (or Y + H+,(S)) ;
S t Z-D Addition(X,Y);

endfor
end Row-Sum/Column-Sum

The Row-Sum and Column-Sum substructures
can be combined to compute the sum of all the
elements of a data plane. To find the sum of the
elements of a data plane, we first apply the Row-
Sum substructure to produce a single column of
accumulated sums. Next, we apply the Column-
Sum substructure to accumulate the elements of
that single column.

3.5 Matrix Multiplication

As an example of algorithm mapping, we present a
parallel algorithm for matrix multiplication which
is based on the use of the computing substructures
introduced above. Let X and Y be n x n matrices
(assuming same size for simplicity) then their prod-
uct X x Y = Z is an n x n matrix whose elements
are given by:

k=n
2” - ‘3 - c XikYkj 7 i,j = l,...,n (1)

k=l

image processing

l Sum of the elements of a data PlmC

. columll Sum

l Cblin multiplication

. Extrema Bnding (Mu/Mi@

l Finding the median of a data plme

. Dotproduct

\
. Matrix rcale
a Horizontal and vertical shift

\
logic NOT, AND

Symbolic r-l Substitution

NIB:

r1 to 714

Figure 3: A hierarchical top-down approach to the mapping of
algorithms onto the optical architecture.

We assume that the matrix X is stored as n x n
matrices: Xn, XnV1,. . . , X1, where each matrix Xi
is formed by transposing the i-th row of X and
replicating it n times. Put differently, each column
of Xi is equal to the i-th row of X, for i = 1,. . . , n.
Let Tk be the matrix formed by the 2-D multiplica-
tion of matrices Xk and Y, then Tk = {tij}, where
t;j =xkjyij for ;,j = l,...,n. Thus summing the
elements of each column of Tk using the Row-Sum
procedure will produce a matrix say ZI, whose first
row represents the k-th row of matrix Z:

;=?I
zk = Ctij, j = l,...,n (2)

i=l

where the first row of zk represents the k-th row
of Z and all the other rows are OS. By repeating
these steps for all values of k (k = 1,. . . , n), we
produce n matrices Z,, Zn-1, . . . , Zl. The first
row of each matrix Zi represents the i-th row of
the product matrix Z. Each matrix ZI, is shifted by
1 - k rows downward. All the shifted matrices are
then added pairwise to produce the final matrix Z.
The complete 2-D matrix multiplication algorithm
is as follows:

177

Procedure Matrix Multiply(Z,X,Y)
begin

for k := 1 to n do
TI, +2-D Multiplication(Xk, Y);
Zk c Row-Sum(Tk);

endfor
for k := 1 to n do

endfor
V(l-k)&h

for k := 1 to n do
Z +-2-D Addition(Z, Zk);

endfor
end Matrix Multiply

It can be seen that the time complexity of the
algorithm is logarithmic in n (O(n logn)) as op-
posed to cubic in n (O(n3)) for the conventional
triple loop matrix multiplication.

4 Potential Performance

In this section, we estimate the theoretical perfor-
mance of the optical architecture by evaluating sev-
eral performance measures and compare them to
the ones of existing SIMD array processors.

4.1 Asymptotic Performance

Hackney and Jesshope[lO] have introduced two pa-
rameters (roe, nlj2) to give a first-order character-
ization of the asymptotic performance of a paral-
lel computing system. The first parameter : tocr

gives a quantitative measure of the maximum rate
of computation in units of equivalent scalar opera-
tions performed per second. For an array process-
ing system, r, is evaluated as follows[lO]:

n2
Too =-

t (3)
array

where tarray is the time taken to execute one op-
eration on all the PEs, this is usually taken as
the processing rate, and n2 is the total number
of PEs. The half-performance length: nlf2 char-
acterizes the amount of hardware parallelism in a
computer architecture. For a nonpipelined array
processor, the factor nli2 is defined to be the vec-
tor length required to achieve half the maximum
performance(r,/2)[10]. For an array processing
system, nli2 is half the array size n2/2 [lo].

The NASA MPP[3] with an array of 128 x 128
PEs and 10 Mhz rate has achieved 6 x log 8bit
operations /s. The CLIP[4] with a 96 x 96 array

and a 25 ps cycle time has achieved 3.7 x 10’ bit
operations/s. The ICL DAP[5] with a 64 x 64 array
and 0.2 ps cycle time, was described to achieve lo8
32-bit operations/s. The Connection Machine[ll]
with 65,536 PEs and a 0.5 ps machine cycle time
can achieve 13 x lOlo bit operations/s (the CM-2
model). For the optical case, if we assume that the
processing unit is formed with NOR-gate arrays[8]
of size 1000 x 1000, and 100 Mhz processing rate,
Tco = 1014 bit operations/s.

4.2 Communication and I/O Capabili-
ties

Communication plays a crucial part in determining
the overall system performance.

Communication bandwidth is the maximum num.
ber of messages that can be simultaneously ex-
changed in one time step. Hence the bandwidth of
the optical system is O(n2), since up to n2 PEs can
send and receive data at a time. The data trans-
mission in the MPP and the CLIP is one column
at a time, therefore their bandwidth is O(n), the
DAP on the other hand, transmits data in a row-
parallel fashion which amounts to the same band-
width factor O(n). The Connection Machine has a
maximum sustained communication bandwidth of
O(n2).

The diameter is the maximum number of com-
munication cycles (or links) needed for any two PEs
to communicate. For the optical system, this fac-
tor is 1, since we allow any number of shifts in
either directions in one cycle time. The MPP and
the DAP are mesh-connected and therefore have
a diameter of 2(n - 1). The CLIP has a hexag-
onal connectivity and therefore has a diameter of
nfl. The Connection Machine, has a diameter of
O(log, li).

Broadcasting is the ability to send the value in
a certain PE to all the other PEs. The amount of
communication cycles to achieve this is considered
a measure of communication performance. This
value is O(n) for the DAP, MPP, and CLIP, and
O(log, n) for the Connection Machine. As far as
the optical system is concerned, broadcasting a
value in one PE to all other n2-1 PEs can be done
in O(log2 n) steps.

In current implementations of the MPP and the
CLIP, I/O is handled in column-parallel fashion
while the DAP is row-parallel (data is loaded into
the processing array one column or one row at a
time). By contrast with the optical system, I/O ac-
tivities are handled in plane-parallel manner. This

178

ability gives the optical system an I/O speedup of
n, for an n x n input image, over the MPP, CLIP
and the DAP which could be a tremendous speed
advantage, considering the large potential value of
n (eventually 1000).

5 Conclusions

In this paper, we have introduced a parallel archi-
tecture based on symbolic substitution logic and
a hierarchical technique for mapping parallel algo-
rithms onto it. The architecture is intended for
applications that exhibit a high degree of data-
level parallelism. The mapping technique is based
on identifying basic computing substructures anal-
ogous to software routines that capture most of the
characteristics of data-parallel algorithms. Parallel
algorithms are then built upon these substructures.
This will make the mapping process more system-
atic and hence efficient. The architecture is highly
amenable to optical implementations using state-
of-the-art optical and electro-optical technologies.
A preliminary theoretical performance analysis of
the proposed architecture has been conducted and
it has been shown that the optical system has a
great potential for outperforming conventional ar-
ray processors. Hence, it may be a better alterna-
tive than current computing systems for high-speed
data-parallel computing.

iteferences

[l] K. Hwang, Z. Xu, and A. Louri, “Remps: An
electro-optical supercomputer for parallel so-
lution of PDE problems,” in Proc. 2nd Int’Z.
Conf on Supercomputing (Santa Clara), May
5 - 8, 1987.

[2] A. A. Sawchuk and T. C. Stand, “Digital opti-
cal computing,” Proceedings of The IEEE, vol.
72, no. 7, pp. 758-779, July 1984.

[3] K. E. Batcher, “Design of a massively parallel
processor,” IEEE Transactions on Computers,
vol. C-29, pp. 836-884, Sept 1980.

[4] M. J. Duff (Fu and Ichikawa, eds.), CLIP 4
: Special computer Architecture for Pattern
Recognition, CRC Press, 1982.

[5] S. F. Reddaway, “DAP - a distributed as-
ray processor,” In First Annual Symposium
on Computer Architecture, Florida, 1973,

PI

PI

PI

PI

PO1

Pll

W. D. Hillis, The Connection Machine, MIT
Press, Cambridge, Mass., 1985.

A. Huang, “Parallel algorithms for optical dig-
ital computers,” In Proceedings IEEE Tenth
Int’l Optical Computing Conf., pp. 13 - 17,
1983.

K. H. Brenner, A. Huang, and N. Streibl,
“Digital optical computing with symbolic sub-
stitution,” AppEied Optics, vol. 25, no. 18, pp.
3054 - 3060, 15 Sept 1986.

K. Hwang and A. Louri, “Optical multiplica-
tion and division using modifed signed-digit
symbolic substitution,” Optical Engineering,
Special issue on Optical Computing, vol. 28,
no. 4, pp. 364 - 373, April 1989.

R. W. Hackney and C. R. Jesshope, Parallel
Computers: Architecture, Programming and
Algorithms, Adam Hilger Ltd, Bristol, 1981.

Thinking Machine Corporation, “Connection
machine model CM-2 technical summary,”
Technical Report Series HA87-4, Thinking
Machine Corporation, 1986.

179

