
A Preliminary Version of an Optical Data-flow Architecture *

Ahmed Louri
Department of Electrical and Computer Engineering

The University of Arizona
Tucson, Arizona 85721

Abstract

For many applications, such as signal and image process-
ing, computer vision, and artificial intelligence, the current
achievable performance is much lower than that needed. Von
Neumann models cannot achieve computational rates equiv-
alent to billions of operations per second that will be required
for these applications. Therefore, parallel models of com-
putation must be used. One attractive concept for future
computer architecture is the data-flow model of computa-
tion. Theoretically, maximal concurrency can be exploited
using such a model. However, the lack of efficient implemen-
tation has prevented its wide use. This paper examines how
optical systems can be used to break the bottlenecks that
conventional electronic implementation imposes and presents
an initial proposal for a high-performance and scalable op-
tical data-flow architecture. The architecture exploits the
high degree of connectivity and inherent parallelism in optics
for implementing a highly pa.ralle1 instruction-level data-flow
multiprocessing system. Both architectural and implemen-
tation issues are considered.

1 Introduction

The ever increasing demands for speed and computational
power from a wide variety of scientific and symbolic appli-
cations are putting stringent demands on computer design.
To achieve the computational rates equivalent to billions of
operations per second that will be required from the process-
ing systems of the future[l], improvements will have to be
made on all fronts of computer system design. System speed
may be increased either by using faster circuit and packaging
technologies or by altering the system architecture to allow
for more operations to be performed simultaneously.

The first approach appears to be leveling off due to fun-
damental physical limits[2]. Recent developments point in
the direction of innovative architectures that exploit paral-
lelism to achieve higher throughput, Within the second ap-
proach (exploitation of concurrency), there are two schools
of thoughts that have been proposed at the system organiza-
tion level[3]. The first one insists on retaining conventional
sequential languages and architecture models and depends

*his research is supported by an NSF Research Initiation Award
No. MIP-8909216.

0073-1129/90/oooO/0121$01.00 0 1990 EEE

strongly on the use of concurrency between instructions.
This concurrency must be detectable in high-level language
programs and managed a t the hardware level. In order to ex-
ploit concurrency in this approach, a program must be parti-
tioned and allocated to processors in such a manner that the
parallelism available in the program can be used effectively
by the system organization. However, programs based on
the conventional languages such as FORTAN, are essentially
sequential and used the concept of updatable storage which
introduces side effects and often completely prevent an effec-
tive extraction of parallelism. In addition, conventional ar-
chitecture models all inherit the von Neumann bottleneck[4]
and therefore restrict maximum use of parallelism.

The second approach, and most promising one, relies on
the use of unconventional (or non-von) architectures based
on parallel models of computation. This approach promotes
both programmability and performance. For programmabil-
ity, new languages (for example, functional languages) that
are not dependent on the sequential model of computation,
free from side-effects, and allow implicit and explicit rep-
resentation of concurrency are desirable. For performance,
highly concurrent systems that avoid centralized control and
allow exploitation of maximum parallelism in user programs
are more desirable. Data-Flow model of computing[5] is one
alternative in which the issues of programmability and per-
formance are not treated separately. In data-flow, an opera-
tion is performed as soon as its operands are available, thus,
no centralized program sequencer is needed. An operation
is purely functional and produces no side effects. Data-Flow
programs are usually described in terms of directed graphs
used to illustrate the flow of dependency of data between
operations. The nodes of the data-flow graph represent op-
erations and the arcs (or edges) represent data dependency.
Theoretically, maximal concurrency can be exploited in such
a model of computation, by directly mapping the data-flow
graph onto a parallel machine, without loss of parallelism,
subject only to resource availability.

Although, the data-flow approach offers a possible so-
lution of efficiently exploiting concurrency of computation,
and eases control of computation by distributing it, it places
stringent demands upon communications and resource avail-
ability. Until now, data-flow appears to be failing to achieve
the proclaimed performance due primarily to (1) the lack
of adequate communication support to satisfy the high data

121

traffic between communicating operations and (2) to con-
tention of ready instructions for the limited resources avail-
able. A major part of the communication problem is due
to the underlying VLSI technology. Conventional electronic
technology seems to be unable to provide the required com-
munication support to exploit maximum parallelism. There-
fore, a design goal of the data-flow community is to mini-
mize the number of communications and manage parallelism
with limited resources. While this compromise alleviates the
heavy demands on system organization, it also leads to loss
of parallelism.

This paper seeks to initiate research into optics as an
advantageous medium for data-flow computing. There are
two parts of our hypothesis; one, that data-flow paradigm
provides a sound basis to uncover inherent parallelism in
user applications and two, that optics is, potentially a better
medium to exploit such parallelism by breaking the bottle-
necks that conventional electronics imposes. A brief descrip-
tion of data-flow computing is given in Section 2. the advan-
tages of optics for parallel processing are briefly expounded
upon in Section 3. Section 4 presents a preliminary optical
architecture that can fully support the data-flow model of
computation.

2 Data-Flow Computing

In data-flow computing, an instruction is enabled when its
operands have arrived[5]. This model of computation has
two major consequences: first, it lets the data dependen-
cies determine the sequence in which operations may be ex-
ecuted. Thus there is no need for a program counter or
central control. This implies that there may be many op-
erations that can execute simultaneously. Thus the support
of concurrent computations. Second, data-flow operations
are purely functional and produce no side-effects. This func-
tionality is due to the fact that operations operate on values
rather than on calls of memory and that their effect is lim-
ited to create another value rather than to update a mem-
ory location. A data-flow program can be represented in a
graph form made up of nodes, representing operations and
arcs representing data dependency[5]. Values are carried by
tokens which move along the lines between operations. Such
a data-flow graph represents the machine language of a data-
flow computer. Operations are distibuted over a network of
homogeneous processing elements (PES). These PES operate
concurrently constrained only by the operational dependen-
cies of the graph.

According to the enabling rules of the operation, data-
flow computers are divided into the static model[6] and the
dynamic model[7]. In the static execution, the subject of
this paper, an operation is declared executable when it has
tokens on all input arcs and there are no tokens on its out-
put arcs. In other words, there can be only one token at
any one time on each arc connecting two operations. This
rule is enforced by requiring an operation to acknowledge

the consumption of the input operands to its predecessors.
This is known as the acknowledgment scheme[6]. In the dy-
namic model, each token has a tag associated with it that
indicates its context. An operation is enabled when its sets
of operands with the same tag have arrived. The advantage
of the dynamic model is the ability for one P E to support
several simultaneous activations of one operation, a feature
not available in the static model. Its major drawback is the
runtime overhead required to manage the tag operations and
the relatively costly associative mechanism needed to imple-
ment the matching store.

3 How Can Optics Help?

The advantages of optics for high-speed parallel process-
ing have been expounded upon on numerous occasions[8,
9, 101. Optical systems are inherently parallel and multi-
dimensional. Lenses, prisms, and mirrors can transfer planes
comprising millions of data points simultaneously. Trans-
mission of information via photons requires no physical con-
ducting material, but relies on low-loss dielectric material
for wave guide propagation or free space. Therefore higher
temporal and spatial bandwidths can be obtained. In addi-
tion, optical signals provide non-interfering propagation (at
low operating energy) which implies the possibility for dense
connectivity. The advantages of using optical systems for
data-flow computing rather than electronic systems can be
seen as follows:

0 Communicat ion: The use of optical techniques has
been widely recognized as a solution to overcome the
fundamental problems of data communications at var-
ious levels, i.e. processor level, board level, as well
as gate level. Some of these problems include limited
temporal bandwidth, clock skew between different sig-
nals, and limited number of 1/0 pins between chips[9].
The parallel nature of optics and free-space propaga-
tion, together with their relative freedom from interfer-
ence make them ideal for parallel computations. Optics
may be able to provide a larger degree of connectivity
and higher temporal bandwidth between processing el-
ements than electronics[l l].

e Time-consuming operations: Moreover, optics may
be a better alternative for some of the basic and time-
consuming operations such as operand searching and
replacing, matching, comparison, duplication etc. These
operations are often sources of major bottlenecks in
conventional systems.

In this paper, we explore optics as a means of implementing
the data-flow model of computation. This includes exploring
optics not only for providing communications as was done
elsewhere[l2] but also for computations.

122

4 First Version of an Optical Data-
Flow Architecture

The proposed preliminary optical architecture has been de-
signed to satisfy the architectural requirements of data-flow
computing, and to take advantage of the unique features of
optics while avoiding its limitations. Three basic principles
have guided the design of this initial architecture.

First, is concurrency achieved through distributed con-
trol. This first principle serves two purposes, namely, to
maximize parallelism extraction from the running applica-
tion and to circumvent the lack of flexibility in optical sys-
tems in order to implement MIMD-type (multiple instruc-
tion multiple data) of computations. For optics, it is easy to
perform the same operation on all the pixels of a 2-D plane.
This property has made optics very attractive for designing
SIMD (single instruction multiple data) array processors for
the implementation of highly structured and regular algo-
rithms. This fact is evidenced by the proliferation of the
various proposals for SIMD optical architectures that have
surfaced recently(l3, 14, 15, 16, 171. However, the essence
of data-flow computing is based on asynchrony of computa-
tions, which means that many operations can be executed si-
multaneously and asynchronously. Therefore, MIMD-type of
control is more natural for data-flow computing than SIMD
one. Because operation execution is purely functional in
data-flow, no notion of the state of the machine or com-
putation is added. The result of an operation execution is
exclusively a function of the input operands. This implies
that control can be fully distributed. This distributed nature
of the control mechanism eases its optical implementation by
circumventing the flexibility issue in optical systems.

The second principle is distributed memory. Having re-
alized that random-access memory is a problem at this time
for optics[l8, 191, the second principle is the use of message-
passing communications and data tagging to shift the burden
from memory-based to register-based system with a high de-
gree of connectivity. This will alleviate the need for address-
able memory since data can be located by sending messages
containing tags to where it resides rather than fetching it
from a central memory.

The third principle is scalability achieved through free-
space programmable optical interconnects. This implies that
the size of the optical machine can be increased or decreased
to fit the size of real applications without major architectural
and software changes.

4.1 Mapping a Data-Flow Graph onto the
Optical Architecture

The optical architecture implements instruction-level data-
flow (fine-grain data-flow). In this scheme, a high level
language program is compiled into a data-flow graph where
nodes represent instructions and arcs represent messages that
need to be sent between these instructions. Instructions in-

clude primitive operations like the basic arithmetic and logi-
cal operations, i.e., addition, multiplication, subtraction, di-
vision, logical AND, logical OR, etc, and control operations
like decider, gates, and boolean operations (greater than,
less than, etc). The control operations are required for im-
plementing complex control structures such as iteration, re-
cursion and conditionals[6].

In pure data-flow computing the number of edges that
are incident onto a node or that emerge from a node are
not limited. Such an unlimited fan-in and fan-out can not
be mapped in a straight-forward fashion onto the process-
ing plane because the hardware complexity required for rep-
resenting each node as well as the time to perform search
would linearly increase with increasing node fan-in and fan-
out. One solution is to restrict the fan-in and fan-out of
a node to some manageable number and use special nodes,
which we call fan-out nodes, whose functions is to create a
manageable graph. Figure 1 shows the representation of the
execution nodes from which instruction-level data-flow pro-
grams are constructed and mapped onto the optical architec-
ture. The circle in Fig. 1 represents an instruction which can
be any primitive arithmetic, boolean, control (logical gates,
mergers, deciders), or fan-out operation. Due to the hard-
ware consideration above, the executing nodes are confined
to fan-in and fan-out factors of 2. This implies that each
node can receive two data tokens form predecessor nodes and
two acknowledgment signals, represented by dotted lines in
the Figure, from successor nodes. Moreover, it can send out
two data tokens and two acknowledgment signals. A data-
flow compiler translates an instruction-level data-flow graph
into an intermediate form composed of primitive nodes and
fan-out nodes. When a node has more than two successors
and more than two predecessors, fan-out nodes are used as
illustrated in Fig.2.

0: Operation (arithmetic, logic, control).
.-.t Data tokens - -* Acknowledgment signals.

Figure 1: Format of a basic dataflow node used in t h e
optical architecture.

I23

Oi: Operation i.

1000 optical logic gates

optical processor 1
optical processor 2

F: Fanout operator.

U I I Processing Comm. Network

Figure 2: Insertion of a fanout node to limit the out-
degree of a dataflow node: (a) the original graph; (b)
the refined graph.

To exploit the multi-dimensional nature of optical sys-
t e m , we represent nodes of the graph as rows of 2-D planes
of say 1000 x 1000 pixels of optical gates (the optical devise
and material community is assuming that planes as large as
1000 x 1000 of optical gates can be realized and handled opti-
cally) . Therefore, each node of the data-flow graph is located
on a row (or several rows) of some plane and has slots (or reg-
isters) for its operands as well as optically interpretable code
for its operation (to be described later). Node-to-node com-
munications are carried out through message-passing proto-
cols via free-space optical interconnects. Functionally, each
row of the processing plane represents an optical processor
(OP) capable of handling one node (or instruction). Each
optical processor is comprised of three components: a pro-
cessing element (PE), a communication element (CE) and a
communication network (CN). The PES execute the primi-
tive operations and data-flow sequencing control. The CEs
are responsible for implementing message-passing protocols
and for transferring messages between communicating PES.
The CNs represent the physical layer (buffers, registers, con-
trol mechanisms, etc.) that is needed for transferring mes-
sages between PES as shown in Fig.3. The separation of the
OPs into PES and CEs allows for more concurrent process-
ing. By shifting the burden of message handling onto the
CEs, communication and computation can proceed simulta-
neously.

4.2 Processing Element

Each PE in the processing plane can be considered as a fi-
nite state machine (FSM) capable of its own control. The
PE represents the processing engine of the optical processor.
It executes primitive instructions and performs data-flow se-
quencing control. Instruction enabling is performed when
all input operands have arrived. Actually, instructions are
enabled as soon as their data operands arrive. Results are
sent out as messages when all acknowledgment signals have

Element Element Element
ophcal processor 1000

An optical processor.

Figure 3: A 2-D processing plane (1000 x 1000 of optical
logical gates) where each row represents an optical
processor (OP).

arrived. This is a slight modification of the original acknowl-
edgment scheme introduced by Dennis[G]. In the latter, in-
struction enabling takes place only when all input operands (
data and acknowledgment tokens) have arrived. The benefit
of the modified scheme is a reduced waiting time, since an
operation can fire while still receiving acknowledgment sig-
nals. Consequently, the PE structure consists of two parts:
an instruction execution section that contains information
used to execute the instruction, and a control section that
contains control information for enabling the instruction and
routing the results as shown in Fig.4.

The control section (Fig.4.a) is composed of 4 fields: (1)
unique tag representing the address of the PE (node-to-PE
allocation is done at compile time, which implies that the
node of the data-flow graph and the PE assigned to it carry
the same tag); (2) a status field indicating the status of the
PE (whether executing, waiting for acknowledgment signals,
or idle); (3) a ready-to-fire (RTF) field that indicates the sta-
tus of the instruction (ready to fire or waiting for operands),
and a count of the number of operands required that will
be used to reset the RTF field after the instruction executes;
and (4) a ready-to-send (RTS) field that monitors the arrival
of acknowledgment signals and indicates when to send the
result to the successor instructions. It also contains a count
of the successors that is used to reset the RTS field once
the results are sent out. The instruction execution section
(Fig.4.b) consists of four fileds: (1) an opcode field that in-
dicates the type of the instruction; (2) two operand fields for
storing the incoming data operands; (3) a destination field
that indicates where the instruction execution results should
go, and the address of the predecessor nodes for which ac-
knowledgment signals are to be sent upon instruction execu-
tion.

I 24

Tag S RTFOC RTS AC
1

Tag: PE address
S: PE status

RTF: Ready-to-fire field
OC: Operand count
AC: Acknowledgment count predecessor nodes
RTS : Ready-to-send field

(a) Control section.

Opcode: instruction type
Opl: Left operand
Op2: Right operand
Destination: address of successor and

(b) Instruction execution section.

L

Opcode Opl o P 2 Destination

Type

Type: Data token/acknowledgment signal

L/R : Leftmight operand

(c) Data token format (message format).

Value Destination L/R

Figure 4: T h e format of t h e (a) control section, (b) instruction execution section, and of t h e (c)
d a t a token (message).

Initially, the RTF bits are cleared to zero for instructions
expecting two operands, and set to one for instructions ex-
pecting one operand or have already one operand as a literal
(literals are allocated at compile time); the operand count
field is set to zero for a dyadic instruction and to one for
a unary instruction; the RTS bits are set to one indicat-
ing that ready instructions can send out results upon firing.
Upon receiving a data token, the P E performs the following
: (1) it checks the RTF bit if set, indicating that one of the
operands has already arrived, if so, (2) it executes the in-
struction and (3) forms a data token from the result and the
destination address. If not, it stores the data value of the
incoming token in its appropriate field and sets the RTF bit
to one. During the execution, the status field of the P E is set
indicating to the CE that the P E is busy. When the PE is in
the busy state, the C E makes sure that incoming messages
are not lost nor do they override current information in the
PE. Upon instruction completion, the P E checks if the RTS
bit is set, in which case the P E sends the result data token to
the CE which in turn will route it to its proper destination
via the communication network. In fact, up to four mes-
sages are sent (according to the successor and predecessor
field counts). Two messages carrying data tokens are sent to
the successor PES, and two messages carrying acknowledg-
ment signals are sent to the predecessor PES signaling that
the instruction is available for further use. Once the data
tokens and acknowledgment signals are sent, the RTF and
RTS bits are reset to the operand and successor counts.

For the fan-out nodes, the execution step consists of repli-
cating the data token just received and sending it to appro-
priate destinations. The data token consists of 3 fields: (1)
a type field indicating whether the token is carrying data or
an acknowledgment signal; (2) a value field for holding data;

and (3) a destination field that indicates where the token
should be sent and consists of the P E address and the in-
struction port as depicted in Fig.4.c. For acknowledgment
signals, the value and port field is irrelevant. When a PE
gets a token carrying an acknowledgment signal, no instruc-
tion execution takes place. Instead, the P E updates the RTS
field and takes further action accordingly.

4.3 Communication Element and Network
Topology

The optical architecture implements instruction-level data-
flow which requires a flexible high-bandwidth communica-
tion network that operates efficiently for small messages (
data tokens). The CE part of the optical processor is re-
sponsible for implementing the message-passing protocols
required. It continually monitors the network to look for
incoming messages. It accepts tokens addressed directly to
the corresponding P E and reroutes tokens addressed to other
PES. The requirements we impose on the interconnection
network both for node-to-node and plane-to-plane commu-
nications are as follows:

Compatibility and expandability: the network topol-
ogy should be compatible with the linear layout of the
optical architecture. In addition, if the machine is to
the scalable to the size of the problem by adding more
optical processors as needed, the network should be
accordingly expandable.

Parallel transmission of messages: the network should
be able to transmit several messages in parallel so as
to enforce concurrency.

I25

Nonblocking: the network should be able to establish
a connection between communicating PES without dis-
turbing other connections.

0 Speed: the topology of the network must allow for easy
and fast transfer of messages between communicating
PES.

Reconfigurability: for plane-to-plane communication,
the network must be reconfigurable with a reasonable
reconfiguration time.

The ideal network for such demands is a crossbar. How-
ever, the implementation and control of large crossbar is not
currently feasible even for optics[ll, 201. Thus networks with
limited connectivity must be used. Candidate networks for
in-plane communications include ring structures (unidirec-
tional, dual counter-rotating, and cordal rings) as shown in
Fig.5. In such networks, messages are passed synchronously
and concurrently between OPs. The scheme functions as a
slotted conveyor belt. The conveyor belt would be a set of
registers representing the CNs and the CEs will consist of
a set of in-registers and out-registers for buffering messages
and a control section for managing data transfer. After each
time unit the OPs are presented with a new slot of the con-
veyor belt. The CE checks the destination of the message,
if the destination is this PE then the data portion of the
message is off-loaded from the CN to the PE. Otherwise, the
message is transmitted to the next available slot. This oper-
ation will be occurring simultaneously in all the OPs on the
plane. The CE will manage contention by buffering messages
when the destination PE is in the busy state. In addition,
the CE will also receive out-going messages from the PE and
routes them onto the network.

The merits of such a scheme are simplicity of control,
parallel communication and compatibility with the linear
layout of the architecture. However, this simple network is
slow and does not offer redundancy. Other variations of this
simple network would be a dual counter-rotating ring net-
work. In this case, Two conveyor belts are available to the
PES for communication with both neighboring OPs. This
brings the advantage that the distance between two neigh-
bors is always 1 while it was either 1 or N-1 in the single
ring scheme (N represents the total number of OPs on the
plane). Moreover, message propagation time is reduced and
redundancy is introduced since two paths exist for communi-
cation between any two OPs. Simplicity of the control is still
maintained. Other refinements can also be brought to the
counter-rotating ring network. Instead of stringing the sec-
ond ring between immediate neighbors, the second ring can
be made to hop over several OPs and connect non-adjacent
OPs. Other refinements would be to allow the network to
access several OPs on the plane in parallel (broadcasting).

4.4 Optical Implementation

This section is intended to provide possible optical imple-
mentations of the different components of the architecture.
It should be noted that these descriptions represent an ini-
tial attempt and are by no means optimal or final. The
optical architecture consists of processing planes which in
turn, consist of optical gates that provide the nonlinear func-
tions required to implement the optical processors described
before. The implementation of such a highly parallel archi-
tecture can be divided into two parts: the implementation of

I I I 0

(a) A single ring network (b) A dual counter-rotating (c) Daisy-chain ring network with hopping
ring network distance greater than one.

Figure 5: Candida te network topologies t h a t are compatible with t h e linear layout of t h e optical
architecture.

the processing elements which execute instructions and data-
flow control, and the implementation of communication pro-
tocols and interconnects (the CEs and CNs). This division
implies that memory is distributed and is part of the PES.
At the higher level, the PES and the CEs are considered fi-
nite state machines with a finite number of states. There are
several optical techniques that can be used to implement an
optical FSM. These include optical sequential logic[21], op-
tical associative processing[22], optical array logic[l3], and
optical symbolic substitution[23] (OSS), among many other
techniques[24]. Among these methods, OSS appears to offer
more parallelism, flexibility, and ease of implementation.

Optical symbolic substitution is a computing technique
that was introduced by Huang [23] to take advantage of the
massive parallelism and high speed in optics. In this method,
information is represented by optical patterns within a two-
dimensional binary image. Computation proceeds in trans-
forming these patterns into other patterns according to pre-
defined OSS rules. It consists of two processing phases: a
recognition phase where the presence of a specific pattern,
called the search pattern, is detected within a coded binary
image and a substitution phase, where the present pattern
is replaced by another pattern, called the replacement pat-
tern according to a predefined OSS rule. Figure 6.a shows
an example of an SS rule and Fig.6.b illustrates its appli-
cation to a 2-D image. The lefthand-side pattern of the SS
rule (search pattern), is first searched in the input image and
then replaced by the righthand-side (replacement pattern).
All locations of the search pattern are recognized in parallel
(if present in the input image). Similarly, all replacements
can be done in parallel.

search replacement
pattern pattern

(a) An example of an S S rule

Input plane Output plane

(b) Application of the above S S rule
to the input plane.

This computing technique can be used to implement in-
struction execution, sequencing control, and data movement
within the node and between nodes. The use of OSS is as
follows: (1) states and state transitions will have to be deter-
mined, next (2) assembly-like instruction set will be derived
that implement the state transitions, (3) finally, symbolic
substitution rules will be developed to optically carry out the
instruction set. Physically, each processing plane becomes a
three-dimensional system as illustrated in Fig.7. The first
plane is the initial state and the second plane is the next
state after data transmission and computation. In between
planes, lies the optical hardware for implementing symbolic
substitution logic and the interconnects. For data movement
(within a PE or inter-PE), pixels form the control section of
a P E can be used to control optical gates that implement
the interconnection network as shown in Fig.8.

Processing plane Optical symbolic Output plane
containing many substitution logic (next states)
optical processors. and i~t"-~nects
(current states)

Figure 7: T h e physical layout of a single optical pro-
cessing plane wi th corresponding optical components
for computa t ion a n d communication.

4.5 A Cluster-Based Optical Data-Flow
System

One of the design goals of the optical architecture was scal-
ability, namely, scaling the parallel processing power of the
machine to match the size of real applications. This can
be achieved by providing several processing planes and pro-
grammable optical interconnetcs, as described next.

Several processing planes can be configured into a cluster-
based architecture as shown in Fig.9, to fit the need of real
applications. These processing planes will communicate though
programmable free-space interconnects. The global inter-
connects can be implemented using a real-time volume holo-
graphic medium such as photorefractive crystals[25]. The
global inter-plane communication can be implemented by
activating different interconnection holograms in a volume
holographic material of large storage capacity.

~i~~~~ 6: ~~~i~ collcept of optical symbolic substitu-
t ion logic

127

Symbolic substitution
control signals

Data Data -
Opaque gates for
non-transmission.

Transparent gates for
data ransmission

t
Lateral data movement within a PE.

Figure 8: Data movement within a PE a n d between PES using symbolic subst i tut ion control signals
a n d programmable shu t t e r arrays.

These holograms can be activated independently. The ma-
chine configuration can be programmed (by the programmer)
to best match the application at hand.

Thus, a two-level interconnection strategy is adopted for
the optical data-flow architecure (1) the lower level, provid-
ing local communications among OPs within a processing
plane, and (2) global communications among OPs in differ-
ent planes. This hierarchy of interconnects (linear layout for
communication within a processing plane and volume inter-
connects between planes) is intended to manage diffraction
effects while providing a high degree of connectivity. An ad-
ditional performance advantage of the two-level interconnec-
tion strategy is that the upper-level communications (among
processing planes) can be fully overlapped with computation
within a processing plane.

5 Conclusion

In this paper, we have examined data-flow computing as a fu-
ture alternative for computer architecture for achieving much
higher computational rates than what is obtainable with to-
day’s computing systems. Data-Flow holds much promise
because it allows exploitation of maximal concurrency. How-
ever, it places stringent demands on communications, which
is making its implementation with electronic technology im-
practical.

Optics, due to its inherent parallelism and non-interfering
communications, appears to be an ideal medium for imple-

Programmable optical
interconnects.

Processing planes.

Figure 9: A scalable optical dataflow machine: the
processing planes communica te via free-space pro-
grammable optical interconnects.

I28

menting the data-flow model of computation. We have pre-
sented a preliminary high-performance and scalable to real-
world problems architecture, that exploits the full potential
of optical systems. The architecture combines the best fea-
tures of data-flow and optics. The distributed control na-
ture of data-flow computing is used to overcome the lack of
flexibility in optical systems, while the high degree of con-
nectivity and multi-dimensional nature of optics is used to
provide adequate architectural and communication support
for data-flow execution.

Much
more work remains to be done in order to conduct a thor-
ough performance analysis on the proposed system and as-
sess its validity to data-flow computing. Many architectural
and algorithm issues, such as the control mechanism, paral-
lel communications schemes, the handling of complex data
structures[26], fault-tolerance, programmability, and program
partitioning and allocation need to be fully elaborated. The
concepts and techniques presented in this paper may in-
spire further research in developing optical data-flow archi-
tectures.

This architecture represents an initial attempt.

References

[I] DARPA, “Strategic computing: New-generation com-
puting technology,” Technical report, Defence Ad-
vanced Research Project Agency, Oct. 1983.

[2] K. C. Saraswat and F. Mohammadi, “Effect of scaling
of interconnections on the time delay of VLSI circuits,”
IEEE Tmnsaction on Electron Devices, vol. ED-29, no.
4, pp. 645-650, 1982.

[3] D. Gajski and J. K. Pier, “Essential issues in multipro-
cessor systems,” IEEE Computer, vol. 18, no. 6, pp. 9 -
18, May 1985.

[4] J. Backus, “Can programming be liberated from the
Von Neumann style?,” Communication of the ACM,
vol. 8, pp. 613 - 641, 1978.

[5) J . B. Dennis and D. P. Misunas, “A preliminary archi-
tecture for a basic data-flow processor,” In Proc. 2nd
Int’l. Symp. on Computer Architecture, pp. 126 - 132,
Jan. 1975.

[SI J . B. Dennis, “Data-flow supercomputers,” Computer,
vol. 13, no. 11, pp. 48 - 56, Nov. 1980.

[7] Arvind and K. P. Gostelow, “A computer capable of
exchanging processors for time,” In Proc. IFIP Congress
77, pp. 849 - 853, Aug. 1977.

[SI A. A. Sawchuk and T. C. Stand, “Digital optical com-
puting,” Proceedings of The IEEE, vol. 72, no. 7, pp.
758-779, July 1984.

[9] A . Huang, “Architectural considerations involved in the
design of an optical digital computer,” Proceedings of
the IEEE, vol. 72, no. 7, pp. 780 ~ 787, July 1984.

[lo] B. G. Kushner and J . A. Neff, “Optical symbolic com-
puting,” In Proc. Fall Joint Computer Conf., pp. 434 -
440. Computer Society Press, 1986.

[ll] A. Hartmann and S. Redfield, “Design sketches for op-
tical crossbar switches intended for large-scale parallel
processing applications,” Optical Engineering, vol. 28,
no. 4, pp. 315 - 328, May 1989.

[12] A. D. MacAulay, “Optical crossbar interconnected digi-
tal signal processor with basic algorithms,” Optical En-
gineering, vol. 25, no. 1, pp. 082 - 090, Jan. 1986.

[13] J . Tanida and Y. Ichioka, “Opals: Optical parallel array
logic system,” Applied Optics, pp. 1565 - 1570, 15 May
1986.

[14] K . H. Brenner, A. Huang, and N. Streibl, “Digital opti-
cal computing with symbolic substitution,” Applied Op-
tics, vol. 25, no. 18, , 15 Sept 1986.

[15] T. J. Drabik and S. L. Lee, “Shift-connected SIMD ar-
ray architectures for digital optical computing systems,
with algorithms for numerical transforms and partial
differential equations,” Applied Optics, vol. 25, no. 22,
pp. 4053-4064, NOV. 1986.

[16] K. S. Huang, B. K. Jenkins, and A. A. Sawchuk, “Op-
tical cellular logic architectures based on binary image
algebra,” In Proc. IEEE Computer Society Workshop
on Computer Architecture for Pattern Analysis and Ma-
chine Intelligence, pp. 19 ~ 26, Oct. 1987.

I171 A . Louri and K. Hwang, “A bit-plane architecture for
optical computing with 2-d symbolic substitution algo-
rithms,” In Proc. 15th Int’l. Symp. on Computer Arch.,
Honolulu, Hawaii, May 30 - June 4, 1988.

[18] A . Guha, R. Ramnarayan, and M. Derstine, “Architec-
tural issues in designing symbolic processors in optics,”
In Proc. 14th Int ’1. Symp. on Computer Architecture,
1987.

[19] M. W. Derstine and A. Guha, “Design considerations
for an optical symbolic processing architecture,” Optical
Engineering, vol. 28, no. 4, pp. 434 - 446, April 1989.

[20] A . R. Dias, R. F. Kalman, J . W. Goodman, and A. A.
Sawchuk, “Fiber-optic crossbar switch with broadcast
capability,” Optical Engineering, vol. 27, no. 11, pp. 955
~ 960, NOV. 1988.

(211 B. K. Jenkins, P. Chavel, R. Forchheimer, A . A.
Sawchuk, and T. C. Strand, “Architectural implications
of a digital optical processor,” Applied Optics, vol. 23,
no. 19, , October 1984.

129

[22] A. D. Fisher, C. L. Giles, and J. N. Lee, “Associative
processing architectures for optical computing,” Journal
Opt. Soc. Am. A, 1984.

[23] A. Huang, “Parallel algorithms for optical digital com-
puters,” In Proceedings IEEE Tenth Int ’1 Optical Com-
puting Conf , 1983.

[24] D. G. Feitelson, Optical Computing : a survey for com-
puter Scientists, MIT Press, 1988.

[25] D. Psaltis, D. Brady, and K. Wagner, “Adaptive op-
tical networks using photorefractive crystals,” Applied
Optics, vol. 27, no. 9, pp. 1752 - 1759, May 1988.

[26] Jean-Luc Gaudiot, “Data-flow computers,” IEEE
Tmnsactions on Computers, vol. c-35, no. 6, pp. 489
- 502, June 1986.

