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Abstract 

For many applications, such as signal and image process- 
ing, computer vision, and artificial intelligence, the current 
achievable performance is much lower than that needed. Von 
Neumann models cannot achieve computational rates equiv- 
alent to billions of operations per second that will be required 
for these applications. Therefore, parallel models of com- 
putation must be used. One attractive concept for future 
computer architecture is the data-flow model of computa- 
tion. Theoretically, maximal concurrency can be exploited 
using such a model. However, the lack of efficient implemen- 
tation has prevented its wide use. This paper examines how 
optical systems can be used to break the bottlenecks that 
conventional electronic implementation imposes and presents 
an initial proposal for a high-performance and scalable op- 
tical data-flow architecture. The architecture exploits the 
high degree of connectivity and inherent parallelism in optics 
for implementing a highly pa.ralle1 instruction-level data-flow 
multiprocessing system. Both architectural and implemen- 
tation issues are considered. 

1 Introduction 

The ever increasing demands for speed and computational 
power from a wide variety of scientific and symbolic appli- 
cations are putting stringent demands on computer design. 
To achieve the computational rates equivalent to billions of 
operations per second that will be required from the process- 
ing systems of the future[l], improvements will have to be 
made on all fronts of computer system design. System speed 
may be increased either by using faster circuit and packaging 
technologies or by altering the system architecture to allow 
for more operations to be performed simultaneously. 

The first approach appears to be leveling off due to fun- 
damental physical limits[2]. Recent developments point in 
the direction of innovative architectures that exploit paral- 
lelism to achieve higher throughput, Within the second ap- 
proach (exploitation of concurrency), there are two schools 
of thoughts that have been proposed at the system organiza- 
tion level[3]. The first one insists on retaining conventional 
sequential languages and architecture models and depends 
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strongly on the use of concurrency between instructions. 
This concurrency must be detectable in high-level language 
programs and managed a t  the hardware level. In order to ex- 
ploit concurrency in this approach, a program must be parti- 
tioned and allocated to processors in such a manner that the 
parallelism available in the program can be used effectively 
by the system organization. However, programs based on 
the conventional languages such as FORTAN, are essentially 
sequential and used the concept of updatable storage which 
introduces side effects and often completely prevent an effec- 
tive extraction of parallelism. In addition, conventional ar- 
chitecture models all inherit the von Neumann bottleneck[4] 
and therefore restrict maximum use of parallelism. 

The second approach, and most promising one, relies on 
the use of unconventional (or non-von) architectures based 
on parallel models of computation. This approach promotes 
both programmability and performance. For programmabil- 
ity, new languages (for example, functional languages) that 
are not dependent on the sequential model of computation, 
free from side-effects, and allow implicit and explicit rep- 
resentation of concurrency are desirable. For performance, 
highly concurrent systems that avoid centralized control and 
allow exploitation of maximum parallelism in user programs 
are more desirable. Data-Flow model of computing[5] is one 
alternative in which the issues of programmability and per- 
formance are not treated separately. In data-flow, an opera- 
tion is performed as soon as its operands are available, thus, 
no centralized program sequencer is needed. An operation 
is purely functional and produces no side effects. Data-Flow 
programs are usually described in terms of directed graphs 
used to illustrate the flow of dependency of data between 
operations. The nodes of the data-flow graph represent op- 
erations and the arcs (or edges) represent data dependency. 
Theoretically, maximal concurrency can be exploited in such 
a model of computation, by directly mapping the data-flow 
graph onto a parallel machine, without loss of parallelism, 
subject only to resource availability. 

Although, the data-flow approach offers a possible so- 
lution of efficiently exploiting concurrency of computation, 
and eases control of computation by distributing it, it places 
stringent demands upon communications and resource avail- 
ability. Until now, data-flow appears to be failing to achieve 
the proclaimed performance due primarily to (1) the lack 
of adequate communication support to satisfy the high data 
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traffic between communicating operations and (2) to con- 
tention of ready instructions for the limited resources avail- 
able. A major part of the communication problem is due 
to the underlying VLSI technology. Conventional electronic 
technology seems to be unable to provide the required com- 
munication support to exploit maximum parallelism. There- 
fore, a design goal of the data-flow community is to mini- 
mize the number of communications and manage parallelism 
with limited resources. While this compromise alleviates the 
heavy demands on system organization, it also leads to loss 
of parallelism. 

This paper seeks to initiate research into optics as an 
advantageous medium for data-flow computing. There are 
two parts of our hypothesis; one, that data-flow paradigm 
provides a sound basis to uncover inherent parallelism in 
user applications and two, that optics is, potentially a better 
medium to exploit such parallelism by breaking the bottle- 
necks that conventional electronics imposes. A brief descrip- 
tion of data-flow computing is given in Section 2. the advan- 
tages of optics for parallel processing are briefly expounded 
upon in Section 3. Section 4 presents a preliminary optical 
architecture that can fully support the data-flow model of 
computation. 

2 Data-Flow Computing 

In data-flow computing, an instruction is enabled when its 
operands have arrived[5]. This model of computation has 
two major consequences: first, it lets the data dependen- 
cies determine the sequence in which operations may be ex- 
ecuted. Thus there is no need for a program counter or 
central control. This implies that there may be many op- 
erations that can execute simultaneously. Thus the support 
of concurrent computations. Second, data-flow operations 
are purely functional and produce no side-effects. This func- 
tionality is due to the fact that operations operate on values 
rather than on calls of memory and that their effect is lim- 
ited to create another value rather than to update a mem- 
ory location. A data-flow program can be represented in a 
graph form made up of nodes, representing operations and 
arcs representing data dependency[5]. Values are carried by 
tokens which move along the lines between operations. Such 
a data-flow graph represents the machine language of a data- 
flow computer. Operations are distibuted over a network of 
homogeneous processing elements (PES). These PES operate 
concurrently constrained only by the operational dependen- 
cies of the graph. 

According to the enabling rules of the operation, data- 
flow computers are divided into the static model[6] and the 
dynamic model[7]. In the static execution, the subject of 
this paper, an operation is declared executable when it has 
tokens on all input arcs and there are no tokens on its out- 
put arcs. In other words, there can be only one token at  
any one time on each arc connecting two operations. This 
rule is enforced by requiring an operation to acknowledge 

the consumption of the input operands to its predecessors. 
This is known as the acknowledgment scheme[6]. In the dy- 
namic model, each token has a tag associated with it that 
indicates its context. An operation is enabled when its sets 
of operands with the same tag have arrived. The advantage 
of the dynamic model is the ability for one P E  to support 
several simultaneous activations of one operation, a feature 
not available in the static model. Its major drawback is the 
runtime overhead required to manage the tag operations and 
the relatively costly associative mechanism needed to imple- 
ment the matching store. 

3 How Can Optics Help? 

The advantages of optics for high-speed parallel process- 
ing have been expounded upon on numerous occasions[8, 
9, 101. Optical systems are inherently parallel and multi- 
dimensional. Lenses, prisms, and mirrors can transfer planes 
comprising millions of data points simultaneously. Trans- 
mission of information via photons requires no physical con- 
ducting material, but relies on low-loss dielectric material 
for wave guide propagation or free space. Therefore higher 
temporal and spatial bandwidths can be obtained. In addi- 
tion, optical signals provide non-interfering propagation ( at 
low operating energy) which implies the possibility for dense 
connectivity. The advantages of using optical systems for 
data-flow computing rather than electronic systems can be 
seen as follows: 

0 Communicat ion:  The use of optical techniques has 
been widely recognized as a solution to overcome the 
fundamental problems of data communications at var- 
ious levels, i.e. processor level, board level, as well 
as gate level. Some of these problems include limited 
temporal bandwidth, clock skew between different sig- 
nals, and limited number of 1/0 pins between chips[9]. 
The parallel nature of optics and free-space propaga- 
tion, together with their relative freedom from interfer- 
ence make them ideal for parallel computations. Optics 
may be able to provide a larger degree of connectivity 
and higher temporal bandwidth between processing el- 
ements than electronics[l l]. 

e Time-consuming operations: Moreover, optics may 
be a better alternative for some of the basic and time- 
consuming operations such as operand searching and 
replacing, matching, comparison, duplication etc. These 
operations are often sources of major bottlenecks in 
conventional systems. 

In this paper, we explore optics as a means of implementing 
the data-flow model of computation. This includes exploring 
optics not only for providing communications as was done 
elsewhere[l2] but also for computations. 
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4 First Version of an Optical Data- 
Flow Architecture 

The proposed preliminary optical architecture has been de- 
signed to satisfy the architectural requirements of data-flow 
computing, and to take advantage of the unique features of 
optics while avoiding its limitations. Three basic principles 
have guided the design of this initial architecture. 

First, is concurrency achieved through distributed con- 
trol. This first principle serves two purposes, namely, to 
maximize parallelism extraction from the running applica- 
tion and to circumvent the lack of flexibility in optical sys- 
tems in order to implement MIMD-type (multiple instruc- 
tion multiple data) of computations. For optics, it is easy to 
perform the same operation on all the pixels of a 2-D plane. 
This property has made optics very attractive for designing 
SIMD (single instruction multiple data) array processors for 
the implementation of highly structured and regular algo- 
rithms. This fact is evidenced by the proliferation of the 
various proposals for SIMD optical architectures that have 
surfaced recently(l3, 14, 15, 16, 171. However, the essence 
of data-flow computing is based on asynchrony of computa- 
tions, which means that many operations can be executed si- 
multaneously and asynchronously. Therefore, MIMD-type of 
control is more natural for data-flow computing than SIMD 
one. Because operation execution is purely functional in 
data-flow, no notion of the state of the machine or com- 
putation is added. The result of an operation execution is 
exclusively a function of the input operands. This implies 
that control can be fully distributed. This distributed nature 
of the control mechanism eases its optical implementation by 
circumventing the flexibility issue in optical systems. 

The second principle is distributed memory. Having re- 
alized that random-access memory is a problem at this time 
for optics[l8, 191, the second principle is the use of message- 
passing communications and data tagging to shift the burden 
from memory-based to register-based system with a high de- 
gree of connectivity. This will alleviate the need for address- 
able memory since data can be located by sending messages 
containing tags to where it resides rather than fetching it 
from a central memory. 

The third principle is scalability achieved through free- 
space programmable optical interconnects. This implies that 
the size of the optical machine can be increased or decreased 
to fit the size of real applications without major architectural 
and software changes. 

4.1 Mapping a Data-Flow Graph onto the 
Optical Architecture 

The optical architecture implements instruction-level data- 
flow ( fine-grain data-flow). In this scheme, a high level 
language program is compiled into a data-flow graph where 
nodes represent instructions and arcs represent messages that 
need to be sent between these instructions. Instructions in- 

clude primitive operations like the basic arithmetic and logi- 
cal operations, i.e., addition, multiplication, subtraction, di- 
vision, logical AND, logical OR, etc, and control operations 
like decider, gates, and boolean operations (greater than, 
less than, etc). The control operations are required for im- 
plementing complex control structures such as iteration, re- 
cursion and conditionals[6]. 

In pure data-flow computing the number of edges that 
are incident onto a node or that emerge from a node are 
not limited. Such an unlimited fan-in and fan-out can not 
be mapped in a straight-forward fashion onto the process- 
ing plane because the hardware complexity required for rep- 
resenting each node as well as the time to perform search 
would linearly increase with increasing node fan-in and fan- 
out. One solution is to restrict the fan-in and fan-out of 
a node to some manageable number and use special nodes, 
which we call fan-out nodes, whose functions is to create a 
manageable graph. Figure 1 shows the representation of the 
execution nodes from which instruction-level data-flow pro- 
grams are constructed and mapped onto the optical architec- 
ture. The circle in Fig. 1 represents an instruction which can 
be any primitive arithmetic, boolean, control (logical gates, 
mergers, deciders), or fan-out operation. Due to the hard- 
ware consideration above, the executing nodes are confined 
to fan-in and fan-out factors of 2. This implies that each 
node can receive two data tokens form predecessor nodes and 
two acknowledgment signals, represented by dotted lines in 
the Figure, from successor nodes. Moreover, it can send out 
two data tokens and two acknowledgment signals. A data- 
flow compiler translates an instruction-level data-flow graph 
into an intermediate form composed of primitive nodes and 
fan-out nodes. When a node has more than two successors 
and more than two predecessors, fan-out nodes are used as 
illustrated in Fig.2. 

0: Operation (arithmetic, logic, control). 
.-.t Data tokens - -* Acknowledgment signals. 

Figure 1: Format of a basic dataflow node  used in  t h e  
optical architecture.  
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Oi: Operation i. 

1000 optical logic gates 

optical processor 1 
optical processor 2 

F: Fanout operator. 

U I I Processing Comm. Network 

Figure 2: Insertion of a fanout node to limit the out- 
degree of a dataflow node: (a) the original graph; (b) 
the refined graph. 

To exploit the multi-dimensional nature of optical sys- 
t e m ,  we represent nodes of the graph as rows of 2-D planes 
of say 1000 x 1000 pixels of optical gates (the optical devise 
and material community is assuming that planes as large as 
1000 x 1000 of optical gates can be realized and handled opti- 
cally) . Therefore, each node of the data-flow graph is located 
on a row (or several rows) of some plane and has slots (or reg- 
isters) for its operands as well as optically interpretable code 
for its operation (to be described later). Node-to-node com- 
munications are carried out through message-passing proto- 
cols via free-space optical interconnects. Functionally, each 
row of the processing plane represents an optical processor 
(OP) capable of handling one node (or instruction). Each 
optical processor is comprised of three components: a pro- 
cessing element (PE),  a communication element (CE) and a 
communication network (CN). The PES execute the primi- 
tive operations and data-flow sequencing control. The CEs 
are responsible for implementing message-passing protocols 
and for transferring messages between communicating PES. 
The CNs represent the physical layer (buffers, registers, con- 
trol mechanisms, etc.) that is needed for transferring mes- 
sages between PES as shown in Fig.3. The separation of the 
OPs into PES and CEs allows for more concurrent process- 
ing. By shifting the burden of message handling onto the 
CEs, communication and computation can proceed simulta- 
neously. 

4.2 Processing Element 

Each PE in the processing plane can be considered as a fi- 
nite state machine (FSM) capable of its own control. The 
PE represents the processing engine of the optical processor. 
It executes primitive instructions and performs data-flow se- 
quencing control. Instruction enabling is performed when 
all input operands have arrived. Actually, instructions are 
enabled as soon as their data operands arrive. Results are 
sent out as messages when all acknowledgment signals have 

Element Element Element 
ophcal processor 1000 

An optical processor. 

Figure 3: A 2-D processing plane (1000 x 1000 of optical 
logical gates) where each row represents an optical 
processor (OP). 

arrived. This is a slight modification of the original acknowl- 
edgment scheme introduced by Dennis[G]. In the latter, in- 
struction enabling takes place only when all input operands ( 
data and acknowledgment tokens) have arrived. The benefit 
of the modified scheme is a reduced waiting time, since an 
operation can fire while still receiving acknowledgment sig- 
nals. Consequently, the PE structure consists of two parts: 
an instruction execution section that contains information 
used to execute the instruction, and a control section that 
contains control information for enabling the instruction and 
routing the results as shown in Fig.4. 

The control section (Fig.4.a) is composed of 4 fields: (1) 
unique tag representing the address of the PE (node-to-PE 
allocation is done at compile time, which implies that the 
node of the data-flow graph and the PE assigned to it carry 
the same tag); (2) a status field indicating the status of the 
PE (whether executing, waiting for acknowledgment signals, 
or idle); (3) a ready-to-fire (RTF) field that indicates the sta- 
tus of the instruction (ready to fire or waiting for operands), 
and a count of the number of operands required that will 
be used to reset the RTF field after the instruction executes; 
and (4) a ready-to-send (RTS) field that monitors the arrival 
of acknowledgment signals and indicates when to send the 
result to the successor instructions. It also contains a count 
of the successors that is used to reset the RTS field once 
the results are sent out. The instruction execution section 
(Fig.4.b) consists of four fileds: (1) an opcode field that in- 
dicates the type of the instruction; (2) two operand fields for 
storing the incoming data operands; (3) a destination field 
that indicates where the instruction execution results should 
go, and the address of the predecessor nodes for which ac- 
knowledgment signals are to be sent upon instruction execu- 
tion. 
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Tag S RTFOC RTS AC 
1 

Tag: PE address 
S: PE status 

RTF: Ready-to-fire field 
OC: Operand count 
AC: Acknowledgment count predecessor nodes 
RTS : Ready-to-send field 

(a) Control section. 

Opcode: instruction type 
Opl: Left operand 
Op2: Right operand 
Destination: address of successor and 

(b) Instruction execution section. 

L 

Opcode Opl o P 2  Destination 

Type 

Type: Data token/acknowledgment signal 

L/R : Leftmight operand 

(c) Data token format (message format). 

Value Destination L/R 

Figure 4: T h e  format  of t h e  (a) control section, (b) instruction execution section, and of t h e  (c)  
d a t a  token (message). 

Initially, the RTF bits are cleared to zero for instructions 
expecting two operands, and set to one for instructions ex- 
pecting one operand or have already one operand as a literal 
(literals are allocated at  compile time); the operand count 
field is set to  zero for a dyadic instruction and to one for 
a unary instruction; the RTS bits are set to one indicat- 
ing that ready instructions can send out results upon firing. 
Upon receiving a data token, the P E  performs the following 
: (1) it checks the RTF bit if set, indicating that one of the 
operands has already arrived, if so, (2) it executes the in- 
struction and (3) forms a data token from the result and the 
destination address. If not, it stores the data value of the 
incoming token in its appropriate field and sets the RTF bit 
to one. During the execution, the status field of the P E  is set 
indicating to  the CE that the P E  is busy. When the PE is in 
the busy state, the C E  makes sure that incoming messages 
are not lost nor do they override current information in the 
PE. Upon instruction completion, the P E  checks if the RTS 
bit is set, in which case the P E  sends the result data token to 
the CE which in turn will route it to its proper destination 
via the communication network. In fact, up to four mes- 
sages are sent (according to the successor and predecessor 
field counts). Two messages carrying data tokens are sent to 
the successor PES, and two messages carrying acknowledg- 
ment signals are sent to the predecessor PES signaling that 
the instruction is available for further use. Once the data 
tokens and acknowledgment signals are sent, the RTF and 
RTS bits are reset to the operand and successor counts. 

For the fan-out nodes, the execution step consists of repli- 
cating the data token just received and sending it to appro- 
priate destinations. The data token consists of 3 fields: (1) 
a type field indicating whether the token is carrying data or 
an acknowledgment signal; ( 2 )  a value field for holding data; 

and (3) a destination field that indicates where the token 
should be sent and consists of the P E  address and the in- 
struction port as depicted in Fig.4.c. For acknowledgment 
signals, the value and port field is irrelevant. When a PE 
gets a token carrying an acknowledgment signal, no instruc- 
tion execution takes place. Instead, the P E  updates the RTS 
field and takes further action accordingly. 

4.3 Communication Element and Network 
Topology 

The optical architecture implements instruction-level data- 
flow which requires a flexible high-bandwidth communica- 
tion network that operates efficiently for small messages ( 
data tokens). The CE part of the optical processor is re- 
sponsible for implementing the message-passing protocols 
required. It continually monitors the network to look for 
incoming messages. It accepts tokens addressed directly to 
the corresponding P E  and reroutes tokens addressed to other 
PES. The requirements we impose on the interconnection 
network both for node-to-node and plane-to-plane commu- 
nications are as follows: 

Compatibility and expandability: the network topol- 
ogy should be compatible with the linear layout of the 
optical architecture. In addition, if the machine is to 
the scalable to the size of the problem by adding more 
optical processors as needed, the network should be 
accordingly expandable. 

Parallel transmission of messages: the network should 
be able to transmit several messages in parallel so as 
to enforce concurrency. 
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Nonblocking: the network should be able to establish 
a connection between communicating PES without dis- 
turbing other connections. 

0 Speed: the topology of the network must allow for easy 
and fast transfer of messages between communicating 
PES. 

Reconfigurability: for plane-to-plane communication, 
the network must be reconfigurable with a reasonable 
reconfiguration time. 

The ideal network for such demands is a crossbar. How- 
ever, the implementation and control of large crossbar is not 
currently feasible even for optics[ll, 201. Thus networks with 
limited connectivity must be used. Candidate networks for 
in-plane communications include ring structures (unidirec- 
tional, dual counter-rotating, and cordal rings) as shown in 
Fig.5. In such networks, messages are passed synchronously 
and concurrently between OPs. The scheme functions as a 
slotted conveyor belt. The conveyor belt would be a set of 
registers representing the CNs and the CEs will consist of 
a set of in-registers and out-registers for buffering messages 
and a control section for managing data transfer. After each 
time unit the OPs are presented with a new slot of the con- 
veyor belt. The CE checks the destination of the message, 
if the destination is this PE then the data portion of the 
message is off-loaded from the CN to the PE. Otherwise, the 
message is transmitted to the next available slot. This oper- 
ation will be occurring simultaneously in all the OPs on the 
plane. The CE will manage contention by buffering messages 
when the destination PE is in the busy state. In addition, 
the CE will also receive out-going messages from the PE and 
routes them onto the network. 

The merits of such a scheme are simplicity of control, 
parallel communication and compatibility with the linear 
layout of the architecture. However, this simple network is 
slow and does not offer redundancy. Other variations of this 
simple network would be a dual counter-rotating ring net- 
work. In this case, Two conveyor belts are available to the 
PES for communication with both neighboring OPs. This 
brings the advantage that the distance between two neigh- 
bors is always 1 while it was either 1 or N-1 in the single 
ring scheme (N represents the total number of OPs on the 
plane). Moreover, message propagation time is reduced and 
redundancy is introduced since two paths exist for communi- 
cation between any two OPs. Simplicity of the control is still 
maintained. Other refinements can also be brought to the 
counter-rotating ring network. Instead of stringing the sec- 
ond ring between immediate neighbors, the second ring can 
be made to hop over several OPs and connect non-adjacent 
OPs. Other refinements would be to allow the network to 
access several OPs on the plane in parallel ( broadcasting). 

4.4 Optical Implementation 

This section is intended to provide possible optical imple- 
mentations of the different components of the architecture. 
It should be noted that these descriptions represent an ini- 
tial attempt and are by no means optimal or final. The 
optical architecture consists of processing planes which in 
turn, consist of optical gates that provide the nonlinear func- 
tions required to implement the optical processors described 
before. The implementation of such a highly parallel archi- 
tecture can be divided into two parts: the implementation of 

I I I 0 

(a) A single ring network (b) A dual counter-rotating (c) Daisy-chain ring network with hopping 
ring network distance greater than one. 

Figure 5: Candida te  network topologies t h a t  are compatible  with t h e  linear layout of t h e  optical  
architecture. 



the processing elements which execute instructions and data- 
flow control, and the implementation of communication pro- 
tocols and interconnects (the CEs and CNs). This division 
implies that memory is distributed and is part of the PES. 
At the higher level, the PES and the CEs are considered fi- 
nite state machines with a finite number of states. There are 
several optical techniques that can be used to implement an 
optical FSM. These include optical sequential logic[21], op- 
tical associative processing[22], optical array logic[l3], and 
optical symbolic substitution[23] (OSS), among many other 
techniques[24]. Among these methods, OSS appears to offer 
more parallelism, flexibility, and ease of implementation. 

Optical symbolic substitution is a computing technique 
that was introduced by Huang [23] to take advantage of the 
massive parallelism and high speed in optics. In this method, 
information is represented by optical patterns within a two- 
dimensional binary image. Computation proceeds in trans- 
forming these patterns into other patterns according to pre- 
defined OSS rules. It consists of two processing phases: a 
recognition phase where the presence of a specific pattern, 
called the search pattern, is detected within a coded binary 
image and a substitution phase, where the present pattern 
is replaced by another pattern, called the replacement pat- 
tern according to a predefined OSS rule. Figure 6.a shows 
an example of an SS rule and Fig.6.b illustrates its appli- 
cation to a 2-D image. The lefthand-side pattern of the SS 
rule (search pattern), is first searched in the input image and 
then replaced by the righthand-side (replacement pattern). 
All locations of the search pattern are recognized in parallel 
(if present in the input image). Similarly, all replacements 
can be done in parallel. 

search replacement 
pattern pattern 

(a) An example of an S S  rule 

Input plane Output plane 

(b) Application of the above S S  rule 
to the input plane. 

This computing technique can be used to implement in- 
struction execution, sequencing control, and data movement 
within the node and between nodes. The use of OSS is as 
follows: (1) states and state transitions will have to be deter- 
mined, next (2) assembly-like instruction set will be derived 
that implement the state transitions, (3) finally, symbolic 
substitution rules will be developed to optically carry out the 
instruction set. Physically, each processing plane becomes a 
three-dimensional system as illustrated in Fig.7. The first 
plane is the initial state and the second plane is the next 
state after data transmission and computation. In between 
planes, lies the optical hardware for implementing symbolic 
substitution logic and the interconnects. For data movement 
(within a PE or inter-PE), pixels form the control section of 
a P E  can be used to control optical gates that implement 
the interconnection network as shown in Fig.8. 

Processing plane Optical symbolic Output plane 
containing many substitution logic (next states) 
optical processors. and i~t"-~nects 
(current states) 

Figure 7: T h e  physical layout of a single optical  pro- 
cessing plane wi th  corresponding optical components  
for computa t ion  a n d  communication. 

4.5 A Cluster-Based Optical Data-Flow 
System 

One of the design goals of the optical architecture was scal- 
ability, namely, scaling the parallel processing power of the 
machine to match the size of real applications. This can 
be achieved by providing several processing planes and pro- 
grammable optical interconnetcs, as described next. 

Several processing planes can be configured into a cluster- 
based architecture as shown in Fig.9, to fit the need of real 
applications. These processing planes will communicate though 
programmable free-space interconnects. The global inter- 
connects can be implemented using a real-time volume holo- 
graphic medium such as photorefractive crystals[25]. The 
global inter-plane communication can be implemented by 
activating different interconnection holograms in a volume 
holographic material of large storage capacity. 

~i~~~~ 6: ~~~i~ collcept of optical symbolic substitu- 
t ion logic 
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Symbolic substitution 
control signals 

Data Data - 
Opaque gates for 
non-transmission. 

Transparent gates for 
data ransmission 

t 
Lateral data movement within a PE. 

Figure 8: Data movement within a PE a n d  between PES using symbolic subst i tut ion control signals 
a n d  programmable  shu t t e r  arrays.  

These holograms can be activated independently. The ma- 
chine configuration can be programmed (by the programmer) 
to best match the application at hand. 

Thus, a two-level interconnection strategy is adopted for 
the optical data-flow architecure (1) the lower level, provid- 
ing local communications among OPs within a processing 
plane, and (2) global communications among OPs in differ- 
ent planes. This hierarchy of interconnects (linear layout for 
communication within a processing plane and volume inter- 
connects between planes) is intended to manage diffraction 
effects while providing a high degree of connectivity. An ad- 
ditional performance advantage of the two-level interconnec- 
tion strategy is that the upper-level communications (among 
processing planes) can be fully overlapped with computation 
within a processing plane. 

5 Conclusion 

In this paper, we have examined data-flow computing as a fu- 
ture alternative for computer architecture for achieving much 
higher computational rates than what is obtainable with to- 
day’s computing systems. Data-Flow holds much promise 
because it allows exploitation of maximal concurrency. How- 
ever, it places stringent demands on communications, which 
is making its implementation with electronic technology im- 
practical. 

Optics, due to its inherent parallelism and non-interfering 
communications, appears to be an ideal medium for imple- 

Programmable optical 
interconnects. 

Processing planes. 

Figure 9: A scalable optical  dataflow machine: the 
processing planes communica te  via free-space pro- 
grammable  optical  interconnects.  

I28 



menting the data-flow model of computation. We have pre- 
sented a preliminary high-performance and scalable to real- 
world problems architecture, that exploits the full potential 
of optical systems. The architecture combines the best fea- 
tures of data-flow and optics. The distributed control na- 
ture of data-flow computing is used to overcome the lack of 
flexibility in optical systems, while the high degree of con- 
nectivity and multi-dimensional nature of optics is used to 
provide adequate architectural and communication support 
for data-flow execution. 

Much 
more work remains to be done in order to conduct a thor- 
ough performance analysis on the proposed system and as- 
sess its validity to data-flow computing. Many architectural 
and algorithm issues, such as the control mechanism, paral- 
lel communications schemes, the handling of complex data 
structures[26], fault-tolerance, programmability, and program 
partitioning and allocation need to be fully elaborated. The 
concepts and techniques presented in this paper may in- 
spire further research in developing optical data-flow archi- 
tectures. 

This architecture represents an initial attempt. 
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