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ABSTRACT 

A novel architecture based on optical technology is pre- 
sented for constructing parallel computers. The architec- 
ture exploits optics for its ultra-high speed, massive par- 
allelism, and dense connectivity. The processing is based 
on a new technique called 2-D symbolic substitution which 
can be implemented with very fast optical components. 
Two-dimensional symbolic substitution algorithms are de- 
veloped for arithmetic/logic operations as well as for com- 
plex scientific computations such as matrix algebra and 
FFT. The predicted performance of the system is compared 
with the performance of existing electronic array processors 
and is shown to be potentially superior. The bit-plane ar- 
chitecture is shown feasible and economical based on state- 
of-the-art optical and electro-optical technologies. 

1 INTRODUCTION 

Many scientific applications such as signal/image pro- 
cessing, finite-element modeling, vision, weather forecast- 
ing, and artificial intelligence are data intensive. Conven- 
tional computers may not be necessarily efficient in pro- 
cessing large amounts of structured data at high speed due 
to the limited processor-memory bandwidth, and the slow 
communication among cooperating processors in a multi- 
processing system. 

Optics can provide a quantum leap over electronics in 
high-speed computing and massive parallelism[l,2,3,4]. Op- 
tics has several important characteristics which make it 
more advantageous over electronics as far as massively par- 
allel processing is concerned: 

l Optical systems are inherently parallel due to their 
multi-dimensional and densely interconnected nature. 
Lenses, prisms, mirrors, etc. can transfer a large data 
plane consisting of millions of resolvable data points 
at once. All data points on the plane can be operated 
upon concurrently. 

l The rate at which data is processed through an optical 
system is essentially limited by the rate at which data 
is placed in the system and detected at the output. 

The actual processing time is mainly light propaga- 
tion through optical devices, which in turn implies 
higher system throughput. 

l Transmission of information via photons requires no 
physical conducting material. Therefore, the band- 
width is limited only by the modulator technology, 
whereas in electronics the bandwidth is limited by 
the capacitance and inductance of the physical con- 
ductors used[5]. 

Although optics can provide the parallelism, high speed 
processing, and high communication bandwidth needed for 
scientific computing, it lacks the programmability, control, 
and decision-making features that are well developed in 
electronic computers. Thus a computer system that com- 
bines the processing power of optics and the programming 
flexibility of electronics is highly desirable. In this paper, we 
present a bit-plane architecture and an extended 2-D op- 
tical processing technique, called symbolic substitution[6], 
for supporting massively parallel computations. The sys- 
tem processes binary images (images of O’s and l’s) called 
bit planes, as fundamental computational entities. Sev- 
eral parallel computers have been constructed based on bit 
plane processing. These include the MPP[7] CLIP[8], ICL 
DAP[9], and to some extent, the Connection MachinellO]. 
The proposed optical system differs from these existing sys- 
tems in many respects. The major differences lie in paral- 
lel I/O, non-restricted interconnection pattern, and czpand- 
ability as elaborated below: 

l Although existing array processors process binary im- 
ages in parallel, the image is still loaded into the pro- 
cessing elements one column (or one row) at a time, 
due to the planar constraints imposed by the elec- 
tronic implementation. In contrast, the proposed op- 
tical system handles the entire image in parallel, both 
at the I/O and processing levels. 

l Electronic array processors have restricted interpro- 
cessor communication to certain patterns wired into 
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the hardware, typically, two-dimensional grid, so that 
an individual processing element (PE) can only com- 
municate ouicklv with its four ( or eight) nearest 
neighbors. This restricts the class of algorithms that 
can be efficiently mapped onto the array to those that 
emphasize local operations. This restriction is allevi- 
ated in the optical architecture since all communica- 
tions are done optically, using free space. 

l It is difficult to add more processing elements to an 
electronic array processor once constructed. Whereas 
in the proposed optical system, adding more process- 
ing power needs only an increase in the input image 
size as shall be seen in subsequent sections. 

The paper is organized into six sections. In Sec.2 we 
describe the optical bit-plane architecture. In Sec.3 we in- 
troduce the 2-D symbolic substitution rules and present 
their optical implementations. In Sec.4 we present algo- 
rithms for 2-D arithmetic using symbolic substitution. In 
Sec.5 we develop parallel algorithms based on 2-D arith- 
metic. In Sec.6 we project the performance of the optical 
system. 

2 THE OPTICAL BIT-PLANE ARCHITECTURE 

Figure 1 depicts a block diagram of the basic compo- 
nents of the system. It consists mainly of: an input im- 
age combiner, a parallel processing unit, an output router, 
a plane-addressable memory unit and control unit. While 
conventional computers manipulate individual O’s and l’s 
as the basic computational objects, the optical architecture 
manipulates images of O’s and l’s (or bit planes). Each bit 
plane, i, corresponds to a weight factor 2’ in the binary rep- 
resentation as shown in Fig.2. Up to three bit planes can be 
processed simultaneously. Locally, the system is viewed as a 
bit-serial processor, since it involves one-bit arithmetic and 
logic operations. Globally, it is viewed as a plane-parahel 
processing system, since large sets of operands stored as bit 
planes are fed through and executed in parallel. 

2.1 The Processing Unit 

This unit operates in a SIMD mode, where the same op- 
eration is applied to all data entries. The actual processing 
is based on the optical symbolic substitution technique[6]. 
In this technique, information is represented by optical pat- 
terns within a two-dimensional image. An optical pattern is 
a spatial arrangement of dark and bright spots correspond- 
ing to the binary values 0 and 1. Computation proceeds in 
transforming these patterns into other patterns according 
to predefined symbolic substitution rules. This technique is 
sensitive not only to the values of bits carrying information 
but also to their spatial locations within the image. 

Symbolic substitution consists of two processing steps: 
a recognition phase where the parallelism of optics is used to 
recognize all the occurrences of a pattern, called the search 
pattern, within an image, followed by a substitution phase 

where another pattern, called replacement pattern, is sub- 
stituted in all the locations of the search pattern. The search 
and replacement patterns constitute one substitution rule. 
We equip the processing unit with three fundamental op- 
erators: the full add, the logical NOT, and the logical AND 
which are defined next. Given bit planes A = {aij), B = 
{bij}, and C = {cij}, where aij,bij,cij E (0, l}, and 
i, j represent the Cartesian coordinates, we define a log- 
ical NOT operator NOT(A) = 2 such that A = {a+} 
(negation). We define the logical AND operator, denoted 
by A, that takes two bit planes as arguments and pro- 
duces an output bit plane as follows: A n B = X, where 
X = {aij A 6ij). The symbol A represents the conven- 
tional logical AND applied to two binary values. We de- 
fine the full add operator, denoted by W, that adds three 
bit planes and produces two output bit planes as follows: 
AH B w C = X, Y, where X = {zij} = {a;j @ bij @ Cij) (sum 
bits), and Y = {yij} = {(aij A bij) V (o;j $ bij) A Cij} (carry 
bits). The signs @, V represent the logical exclusive or and 
logical or respectively. The three fundamental operators 
constitute a complete logic and arithmetic set. The optical 
implementation of these operators will be presented in the 
next section. 

2.2 The Input Combiner 

The data represented as bit planes is fed to the process- 
ing unit through three input planes A-, B-, and C-plane 
as shown in Fig.1. The objective of the input combiner is 
to perform spatial permutations of the input data in such 
a way that overlapping bits from the input planes form 
spatial patterns upon which the processing unit applies the 
relevant symbolic substitution rules. Depending on the fun- 
damental operator needed at a given computational step, 
the input combiner performs three data movement func- 
tions a~ follows: for the case of the logical NOT, the input 

combiner needs only to transmit the input image to the 
processing unit without any change in the spatial position 
of the data. The logical AND operator is applied to two 
bit planes. The corresponding data movement function is 
called the 2-D perfect shufle. This function is an extension 
of the 1-D perfect shuffle [ll] to bit planes. The 2-D per- 
fect shuffle permutations affect only the row position of the 
data leaving the column position unchanged. A pictorial 
description of the 2-D perfect shuffle is shown in Fig.3 for 
a 3 X 3 input planes. 

The full add operator is applied to the three input planes. 
The data movement function needed in this case is called 
the 2-D S-shufie permutation. This function is also a 2-D 
extension of the 1-D 3-shuffle permutations[l2]. The per- 
muted output is formed by alternating the rows of the 3 
input planes. 

2.3 The Output Router 

This unit directs the processed data to its appropriate 
destination. It accomplishes this through three data move- 
ment functions, namely: feeding back the carry bit plane 
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Fig.1 The Architecture of an optI :a bit-plane processor array 

resulting from a full add operation, transferring the results 
to the memory for storage, and shifting the processing unit 
output vertically or horizontally by a variable number of 
pixels. The shifting functions enable communication be- 
tween pixels. These shifting functions add a tremendous 
processing power and flexibility to the system. Many alga 
rithms are recursively defined, where the same processing 
steps are applied to a reduced set of data points at each 
iteration. Such algorithms can be executed more efficiently 
by including the shift functions. 

The memory unit is assumed to be random-access plane- 
addressable. It is organized such that data is retrieved and 
stored in plane format. The execution sequence and the 
data flow are controlled by a very fast controller that gen- 
erates control signals to different units during the execution 
of a program code. It should be noted that the 2-D paral- 
lelism is maintained throughout all the processing stages of 
the system thus aliowing it to support massive parallelism. ____----- -------- -------- 
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Fig.2 Data representation as a stack of bit pIanes 
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Fig.3 The 2-D perfect shuffle operation. 

3 OPTICAL IMPLEMENTATION 

The first consideration in implementing the system, is 
the optical encoding of the binary values 0 and 1. There are 
several properties of light that can be used. These include 
light intensity, polarization, and optical signal phase. A 
possible representation is to encode the logic value 0 by 
two pixels dark-bright, and the logic value 1 by the inverse 
pattern, bright-dark as shown in Fig.4. In what follows, we 
focus on the conceptual issues in implementing the system. 

m m 
0 1 

Fig.4 Light encoding of the binary values 0 and 1 
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3.1 The Input/Output Data Routing 

The data movement functions assumed by the input 
combiner and the output router are all space-invariant. 
A wide variety of methods can be imagined for realizing 
these functions. Electrically controllable optical devices 
such as Wollaston prisms, halfwave plates, and polariz- 
ers can be used to implement the interconnection patterns 
required[l3]. Lohmann[lJ] has given an optical setup for 
performing the 1-D perfect shuffle. The same principle can 
be extended to Z-D perfect shuffle. The 2-D 3-shuffle can 
be implemented in 3 steps as shown in Fig.5. We mag- 
nify the input arrays to the total size of the 3 arrays, and 
then by appropriate masking, we achieve the permutations 
needed. The setup shown in Fig.5 can be extended to 2-D 
by replicating the hardware n times for an n x n input bit 
planes. There are other methods that have been reported 
for implementing the perfect shuffle permutations [14]. 

Input c 

Input A 

Input B 

Magnification Masking 

Fig.5 The principle of an optical Z-D 3-shuffle. 
The shuffling is done by interlacing the input 
arrays 

Halfwave plates and polarizing beam splitters can be 
used to control the pathways of the light beam at the out- 
put router. The main component of such a unit is the im- 
age shifter which is able to shift a bit plane by an arbitrary 
number of pixels. The direction and amount of shift are 
program dependent, and are supplied to the shifter as con- 
trol signals. This shifter can be implemented using birefrin- 
gent prisms and electro-optical cell[l3], or using real time 
holograms in a photorefractive media[l5]. 

3.2 The Symbolic Substitution Processing Unit 

This unit is based on the optical symbolic substitution 
for performing arithmetic and logic. Symbolic substitution 
can be formally defined by a three-tuple, S = (R, P,Q) 
where R is a one-to-one mapping from the domain P to the 

range Q; R : P --t Q. R is the set of substitution rules 

R= (rl,rz,..., r,) where n is the total number of rules. P 

is the set of search patterns and Q is the set of replacement 
patterns. Each substitution rule ri can be defined as: 

ri(Pj)= qQj i,‘:%I 
{ 

. . 

for i = 1 , . . . , n and 4 representing an empty pattern (a 
number of dark pixels). 

We derive the symbolic substitution rules required to 
implement the fundamental operators from their sssoci- 
ated truth-table specifications. The input combinations of 
these truth tables constitute the search patterns, and the 
table entries represent the replacement patterns. The log- 
ical NOT operator manipulates one bit pattern, while the 
AND and the full add manipulate 2 and 3 bits respectively. 
Therefore, a total of 14 substitution rules are required to 
implement the fundamental operators as shown in Fig.6. 

rl carry 
Sum ------ 

---------7 
I , 

rLw 

: 
: 

-------v-J 
----------7 

8 

l5 
!!!liid; --------------A 

____---------- 

(a) Optical substitution rules for the full addition 

(b) Optical substitution rules for the logical AND 

(c) Optical substitution rules for the logical NOT 

Fig.6 Optical symbolic substitution rules for full 
add, logical AND, and logical NOT operators 

To illustrate the optical implementation of the two pro- 
cessing steps involved in symbolic substitution let us con- 
sider the implementation of substitution rule rs in Fig.6. 
The search pattern Ps of rs can be described by : 

83 = (P,“, w (2) 
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where Ps” and I’s’ are the dark-pixel pattern and bright- 
pixel pattern of Ps respectively (Fig.‘la). These latter can 
in turn be described by a 2-D position vector with discrete 
components. Each component represents the location of a 
dark ( or a bright ) pixel in the Cartesian plane: 

p3O = {(~l,Yl)(~Z,Y1)(Z3,Y3)} and 

p3l = {(a’, Yl’) (x2’, Y2’) (G’, Y3‘)) (3) 

where (xi, Yi), (xi, yi’) are the Cartesian coordinates of the 
i-th dark pixel and the i-th bright pixel respectively. Thus 
PS can be expressed by: 

ps" = (0,0)(1,1)(0,2), Psl = (1,0)(0,1)(1,2) (4) 

We extend the implementation method described in Ref. 
[16] to implement the new substitution rules introduced in 
Fig.6. Since we are using dual-rail coding (the value and its 
complement), it is sufficient to recognize the dark-pixel pat- 
tern or the bright-pixel pattern of a search pattern to com- 
pletely recognize it!lG]. We choose to recognize the dark- 
pixel pattern as this appears more convenient for practical 
realization. The recognition phase is illustrated in Fig.7. 
In this phase, the input plane must be replicated as many 
times as. there are dark pixels in the search pattern. Each 
copy is associated with one dark pixeI. Therefore the in- 
put plane of Fig.7 is replicated into 3 copies. Copy 1 is 
associated with dark pixel (zi, yr), copy 2 with (~2, yz) and 
copy 3 with (23,~s) as shown in Fig.7b. Then each copy i 
is shifted by -xi along the X-axis and -yi along the Y-axis 
in such a way that its associated dark pixel coincides with 
the origin (Fig.‘lc). Next, the shifted copies are superim- 
posed(Fig.7d). The superimposed image is then inverted 
using an optical NOR-gate array(l6] and AND-ed with a 
mask M as shown Fig.7e. The presence and the location 
of the search pattern in the input image is indicated by 
a bright pixel in the masked output ( or the recognition 
plane) as shown in Fig.7f. 

The substitution phase is shown in Fig.8. In this phase, 
the recognition plane is replicated as many times as there 
are bright pixels in the replacement pattern. In our exam- 
ple, the recognition plane is replicated twice as shown in 
Fig.8b. Each replica i is associated with the i-th bright 
pixel of the replacement pattern. Then each replica is 
shifted by +z: along the X-axis, and +y,! along the Y-axis 
such that its associated bright pixel overlays with its proper 
location in the replacement pattern (Fig.Bc). Then all the 
shifted copies are superimposed to form the output image 
as shown in Fig.8d. 

The method just outlined is used to process one substi- 
tution rule. Generally, several substitution rules are simul- 
taneously applied. In order to process several rules con- 
currently, the output of the input combiner is replicated a 
number of times equal to the number of rules to be acti- 
vated at a given stage of computation (for example, to add 3 
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Fig.7 The Optical image processing steps needed to 
implement the recognition phase of symbolic substitution 
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bit planes, we need to replicate the arranged input 8 times 
corresponding to the 8 substitution rules associated with 
the full add operator). Each copy is sent to one rule, after 
the necessary substitutions, the outputs of all the active 
rules are optically combined to form the processed result 
as shown in Fig.9. 

Output of the 

II Recognize Scriber II 

I 

t 

Image 
combiner 

Fig.9 The optical symbolic substitution 
processing unit 

3.3 The Memory Organization 

Spatial light modulator or bistable optical technologies 
[l] can be used for single-plane temporary storage such as 
the input and output planes. However, this will not be suf- 
ficient to implement a memory unit able to hold a large 
number of bit planes. Volume holograms, with their ability 
to store information in 3-D, show a great potential for a 
dramatic increase in optical storage density. Photorefrac- 
tive materials such as Lithium Niobate and Potassium Nio- 
bate are also attractive new candidates for real-time optical 
memory. 

4 2-D ARITHMETIC/LOGIC ALGORITHMS 

The proposed architecture exploits image (or spatial) 
parallelism, which means the simultaneous processing of 
the entire binary images at each computational step (or 
cycle). To enforce this capability, we identify high-level 
operations that can be simultaneously applied to large sets 
of data represented in planes. The use of such constructs 
to formulate parallel algorithms will provide an efficient 
algorithm-architecture mapping. 

In what follows, the boldface notation i.e. X, Y etc. 
denotes a data plane (or a stack of bit planes), and the 
italic notation (i.e. X,Y) designates a single bit plane. 
The notation A t X is interpreted as data transfer from 
memory location X to input plane A. X c Y denotes 
data transfer from memory location Y to X. This involves 
loading Y, going through the processing unit without any 

effect,, and storing it in X. C t 0 is interpreted as loading 
the C-plane with a zero bit plane (all entries are 0). Loop 
indices and parameter calculations such as “for i = a to 
b” should be interpreted as control instructions that are 
executed by the control unit. 

4.1 2-D Addition/Subtraction 

This operation refers to the addition (subtraction) of 
corresponding elements of two n x n data planes X and Y 

of integers. The result is a data plane S = { sij }, where 
Sij = Xij $: Yij for i,j = 1,. . . ,n. LetXbeannxnq-bit 
planes, Xq-l,Xq-l,. . . , X0 where q is the precision of the 
operands, X0 being the least significant and X,-l being the 
most, significant bit planes respectively. Similar considera- 
tions take place for the data plane Y, the procedure is as 
follows: 

Procedure 2-D Addition(X,Y) 

begin 

cto; 

for k := 0 to q - 1 do 

A +- X,; 

B + Yk; 

Sk, Gout + Au BuCi, 

sq +- c; 

end 2-D Addition 

The notation Sk, Gout t A &I B IJ Ci,, in the above pro- 
cedure, designates the addition of bit planes A and B to- 
gether with the previous carry Ci,; the sum bit plane is 
to be stored in Sk and the resulting carry bit plane, Gout, 
is routed back to input plane C (Ci, and Coat represent 
the same physical location). The procedure starts by ini- 
tializing the C-plane to zero, and loading bit planes X0, 
YO into A-plane and B-plane respectively. The processing 
unit applies the full add substitution rules simultaneously 
to the 2-D 3-shuffled plane. The sum bit plane is stored 
in SO, and the carry bit plane is fed back to the C-plane 
for the next, iteration, while the memory unit loads the bit 
planes X1 and Yl in the A-plane and B-plane respectively. 
The whole process continues until X,-l and Yp-l are added 
and the sum &,Sl, . . . ,S, stored as a stack of bit planes 
in the memory. The addition of two q-bit planes is done 
in q iterations, regardless of the number of operands to be 
added. 

Representation of numbers in two’s complement form 
allows 2-D subtraction by adding few additional steps to 
the 2-D addition procedure. The pairwise subtaction of 
two data planes X,Y is done by first forming the two’s 
complement of the subtrahend Y, then add it to X, using 
the 2-D addition procedure. The two’s complement of data 
plane Y is obtained by applying the substitution rules for 
the NOT operator and the 2-D addition procedure. 
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4.2 Z-D Multiplication 

This operation refers to the multiplication of correspond- 
ing elements of two data planes. Let X and Y be as de- 
scribed previously, then the product P is a 2q-bit planes 
P = P2,-1P2,-2.. . PO, where pij = Xij x Yij. This opera- 
tion uses the logical AND and the full add operators. The 
complete procedure is as follows: 

Procedure 2-D Multiplication(X,Y) 
begin 

for lc := 0 to 2q - 1 do 
9 +- 0; 

forI:=Otoq-ldo 
c + 0; 
for m := 0 to q - 1 do 

A t X,; 
B + Yr; 
B+AnB; 

A + Pm+z; 
P m+l,C + AkJBkJC; 

endfor; 
P q+l +- c; 

endfor; 
end 2-D Multiplication 

The time complexity of the 2-D multiplication is O(q’), 
independent of the number of pairs to be multiplied. Note 
that, unlike the conventional shift and add multiplication 
algorithm, we did not need to shift the previous partial 
product to generate the current one. Instead, we start the 
addition at the bit plane corresponding to the amount of 
shift required. 

4.3 2-D Shift 

We define two operations for shifting a data plane by 
a variable number of pixels. The shift considered here is 
the logical shift, where columns (or rows) of OS enter the 
opposite direction of the shift. Given P = P,-lP,-z.. . PO, 
and X = Xq-1Xq-2.. . X0, we define a horizontal shift op- 
eration, denoted by H,(P), to be the data plane P shifted 
in the X-axis by cr columns ( +CY for positive shift, and --a 
for negative shift) as shown in Fig.lOa. The shifted plane 
can be either stored in itself or in a different memory loca- 
tion, therefore the notation X t H,(P) is interpreted as 
shifting the data plane P by (Y columns and storing it in 
X. Similarly, we define the vertical shifting operation, de- 
noted by V,(P), to be the data plane P shifted along the 
Y-axis by (Y rows ( +cu for upward shift, and -a for down- 
ward shift) as shown in Fig-lob. These shift operations are 
implemented by the shifter unit. 

4.4 Summation of nz Numbers 

This refers to calculating the sum of all the elements 
of an array, Let the initial array of data S contain n2 
elements and be stored as bit planes : S,-,S,-,. . . So. The 
algorithm is composed of two phases. In the first phase, 
we sum the elements of S along the rows to produce one 

row of accumulated sums. In the second phase, we sum the 
elements of this row along the columns to produce a single 
integer whose value is the sum of all the data entries of S. 
The detailed procedure is as follows: 

Procedure Sum(S,X,Y) 
begin 

for k = 1 to logzn do 
ff := 425 

/* Loop 1 */ 

p := xi=: (n/2”); 
x + V-p(S); 

v+#9 1x1 i 
y + V+a(S); 
S t 2-D Addition(X,Y); 

endfor /* end Loop l*/ 
for k = 1 to log,n do 

a := n/2k; 
/* Loop 2 */ 

/3 := xi:: (n/2k); 
X + H+(S); 

H+dX); 
Y + H+,(S); 
S c 2-D Addition(X,Y); 

endfor /* end Loop 2 */ 
end Procedure Sum 

There are two other useful operations that are similar 
to the Sum procedure namely, Row-Sum and Column-Sum. 
Row-Sum sums the elements of data plane along the rows, 
thus reducing a data plane to one row of accumulated sum, 
while all the other rows contain OS. Column-Sum accumu- 
lates the data along the columns thereby producing a new 
plane whose first. column represents an accumulation of alI 
the columns, and OS in the rest. In fact, “Loop 1” and 
“Loop 2” in the above procedure implement Row-Sum and 
Column-Sum respectively. 

Sl PI3 PM A4 

Plane P pa1 Paz P23 Pa, 
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p41 p42 P43 ptr 

H+z(P) H-Z- 
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El 

00 00 v+a (PI 
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(b) The vertical shift (Shown for a = f2) 

Fig.10 The horizontal and vertical shift functions 

24 



5 MAPPING PARALLEL ALGORITHMS 

Data movement can be used to characterize an algo- 
rithm running on a parallel system. Consequently, parallel 
algorithms can be classified in two major classes : those 
with local interconnections and those with global intercon- 
nections 1121. The optical architecture offers a great flexi- 
bility in handling both local as well as global computations. 
In what follows, we use the 2-D operations introduced pre- 
viously to construct parallel algorithms that can be directly 
mapped onto the optical architecture. The first example is 
for finding the product of two matrices which exhibits lo- 
cal and intensive computations. The second example is for 
computing the 2-D fast Fourier transform which represents 
a typical example of global communication. 

5.1 Matrix Multiplication 

Let X and Y be n x n matrices (assuming same size 
for simplicity) then their product X x Y = Z is an n x n 
matrix whose elements are given by: 

k=n 

zij = c XikYkjt i,j = 1 ,...,n (5) 
k=l 

We assume that the matrix X is stored as n x n data 
planes : X”, X”-‘, . . . , X’, in which each column of x’ is 
equal to the i-th row of X, for i = 1, . . . ,n. Let XL = 
{Xij’}, where Xijk = xkj. Let Tk be the matrix formed by 
the 2-D multiplication of matrices Xk and Y, then Tk = 
{tij}, where tij = Xij’Yij = xkjyije Thus summing the el- 
ements of each column of Tk using the Row-Sum procedure 
will produce a matrix say Zk whose first row represents the 
first row of matrix Z: 

i=n 
zk=xtij, j=l,...,n 

i=l 
(6) 

where the first row of Zk represents the first row of Z and 
all the other rows are OS. By repeating these steps for all 
values of k ( k = l,... ,n), we produce n matrices Z,, 
L-1. . . . , Z1. The first row of each matrix Zi represents 
the i-th row of the final product matrix Z. We shift these 
matrices by appropriate shifts, and add them pairwise to 
produce the final matrix Z: 

Procedure Matrix Multiply(Z,X,Y) 

begin 

for k := 1 to n do 

Tk -2-D Multiplication(X”, Y); 

& t- Row-Sum(Tk); 

endfor 

for k := 1 to n do 

V(1-k)(Zk); 

for k := 1 to n do 

Z +2-D Addition(Z, Zk); 

end Matrix Multiply 

The time complexity of the algorithm is O(n(qlog,n + 
q’)), where q is the operand length. It can be seen that 
the time complexity of this algorithm is logarithmic in n, 
as opposed to cubic in n for the conventional triple loop 
matrix multiplication. 

5.2 2-D Fast Fourier Transform 

FFT is a transitive function since every output is a non- 
trivial function of every input. One would expect such func- 
tions to generate global communications. A two-dimensional 
Fourier transform can be mathematically defined as follows: 

X(kl,kz) = 2 2 x(n~,n~)W”akzWnlkl 
r&1=1 np=l 

(7) 

for kI,kz = l,..., n. This is equivalent to : 

X(h, k2) = FFT,, (FFT,,z(nl, n2)) (8) 

This form gives rise to a 3-D signal flow graph, which if 
calculated in a conventional way, would take O(n2 log, n), 

by first applying 1-D FFT rowwise(columnwise) n times 
and then applying, on the transformed sequence, 1-D FFT 
columnwise (rowwise) n times. In [Ill, a single stage per- 
fect shuffle interconnect and a set of multiply-add mod- 
ules were introduced for in-place computation of 1-D FFT. 
We present here an extended algorithm for computing 2-D 
FFT, using the 2-D operations introduced in Sec.4 and the 
2-D perfect shuffle function described in Sec.2. 

In the following algorithm, we assume the data points X 
are stored in two data planes, U, for the upper portion, and 
L for the lower portion. Wi are data planes, corresponding 
to the weights of the i-th stage as indicated in Eq.7, S,, 
Sl and T are scratchpad planes used to hold intermediate 
results. 

Procedure 2-D FFT(X) 

begin 

for k := 1 to log,n do 

TJ + V-n/n(X) ; 

v+n/a (U) i 

L + V,n/P (W; 
T + 2-D Multiplication(L, Wh); 

S, c 2-D Addition(U,T); 

Sr e 3-D Subtraction(U, T) ; 

X e 2-D Perfect Shuffle(S,,Sr); 

endfor 
end Z-D FFT 

The expression X + 2-D Perfect Shuffle(S,, Sl), in the 
above procedure designates the 2-D perfect shuffle of the 
matrices S, and St. The resulting transform is in reverse 
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binary order. The above algorithm computes the column- 
wise (rowwise) computations. We have to restore the nor- 
mal order before we proceed for the rowwise (columnwise) 
computation. This is done by O(logrn) permutations in- 
volving only data movement. The algorithm computes the 
2-D FFT in C(g2 log2 n) iterations. The inverse FFT can 
be expressed in the same formalism as the FFT, and there- 
fore can be computed by the same algorithm. 

6 PERFORMANCE PROJECTION 

We project the performance of the optical architecture 
by estimating several performance metrics and compare 
them with those of commercial electronic array processors 
such as the MPP, CLIP, DAP and the Connection Machine. 

6.1 Asymptotic Performance 

Hockney[l7] introduced a performance metrics called: 
ri,f to give a first-order characterization of the asymptotic 
performance of a parallel computing system. The parame- 
ter r;,f gives a quantitative measure of the maximum rate 
of computation in units of equivalent scalar operations per- 
formed per second. For an array processing system, rinr is 
evaluated as follows[ 171: 

n2 
rinf = 1 (9) 

bray 

where tarroy is the time taken to execute one operation on 
all the PEs, this is usually taken as the clock period, and 
n2 is the total number of PEs. Assuming an array size of 
1000 x 1000, and 10 Mhz rate, ri,f is then 10” bit opera- 
tions/sec for the optical system. The MPP with an array 
of 128 x 128 PEs and 10 Mhz rate has achieved 6 x 10’ 8-bit 
operations /sec. The CLIP with a 96 x 96 array and a 25 
psec cycle time has achieved 3.7 x 10’ bit operations/set. 
The DAP with a 64 x 64 array and 0.2 psec cycle time, 
was described to achieve 10’ 32-bit operations/set. The 
Connection Machine with 65,536 PEs and a 0.5 psec cycle 
time can achieve 13 x lOlo bit operations/set (the CM-2 
model[l8]). It can be seen that the potential throughput 
of the optical system can be at least 3 orders of magnitude 
higher than any existing array processor. 

The half-performance length: nl12 determines the amount 
of the hardware parallelism in a computer architecture[l7]. 
For a nonpipelined array processor, the factor nli2 is de- 
fined to be the vector length required to achieve half the 
maximum performance(ri,l/2). This can be easily calcu- 
lated for all the systems since half the vector is simply half 
the array size, hence nllz = 5 x lo5 for the optical archi- 
tecture, 8192 for the MPP, 4608 for the CLIP, 2048 for the 
DAP, and 32768 for the CM-2. 

0.2 Communication and I/O Capabilities 

The parameters rinr and nl/2 do not completely reflect 
the effectiveness of a parallel computer. Communication 

plays a crucial part in determining the overall system per- 
formance. There are many communication metrics in the 
literature[l9] we choose the most widely used for our pur- 
poses: 

Communication bandwidth is the maximum number of 
messages that can be simultaneously exchanged in one time 
step. Hence the bandwidth of the optical system is n2, since 
up to n2 PEs can receive and send data at a time. The data 
transmission in the MPP and the CLIP is one column at 
a time, therefore their bandwidth is n, the DAP on the 
other hand transmits data in a row-parallel fashion which 
amounts to the same bandwidth factor n. The Connection 
Machine has a maximum sustained communication band- 
width of 2n2. 

The diameter is the maximum number of communica- 
tion cycles (or links) needed for any two PEs to communi- 
cate. For the optical case, this factor is 1, since we allow any 
number of shifts in either directions in one cycle time. The 
MPP and the DAP are mesh-connected and therefore have 
a diameter of 2(n - 1). The CLIP has a hexagonal connec- 
tivity and therefore has a diameter of nfi. The diameter 
of a Connection Machine of size n2 PEs is O(log, n). 

Broadcasting is the ability to send the value in a certain 
PE to all the other PEs. The amount of communication 
cycles to achieve this is considered a measure of communi- 
cation performance. This value is O(log, n) for the optical 
system, O(n) for the DAP, MPP, and CLIP, and O(log, n) 
for the Connection Machine. 

Unfortunately no metrics exist that measure the I/O ca- 
pability of a parallel computer. In current implementations 
of the MPP and the CLIP, I/O is handled in column-parallel 
fashion while the DAP is row-parallel. By contrast with the 
optical system, I/O activities are plane-parallel. This gives 
the optical system an I/O speedup of n over the electronic 
counterparts. Table 1 summarizes the various performance 
metrics values considered above. 

7 CONCLUSIONS 

We have proposed a bit-plane architecture that takes ad- 
vantage of many useful properties of optics for parallel pro- 
cessing. We have discussed its implementation using state 
of-the-art optical devices. We introduced 2-D symbolic sub- 
stitution rules for arithmetic/logic operations. These rules 
are used for parallel SIMD computation. Furthermore, we 
presented data-parallel constructs to implement parallel al- 
gorithms on the proposed architecture. The performance of 
the proposed optical array processor has the potential to be 
at least thousand times higher than any existing electronic 
array processor. 
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Table 1: Performance comparison of the optical bit-plane architecture with electronic array processors 

Computing 
System 

Performance Metrics 
Maximum 1 Parallelism 1 Diameter 1 Bandwidth 1 Broadcasting 1 I/O Cycle 

Architecture 

Note: n* is the array size (total number of PE’s) 
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