
A BIT-PLANE ARCHITECTURE FOR OPTICAL COMPUTING

WITH TWO-DIMENSIONAL SYMBOLIC SUBSTITUTION

Ahmed Louri and Kai Hwang

Computer Research Institute

University of Southern California

Los Angeles, California 90089-0781

ABSTRACT

A novel architecture based on optical technology is pre-
sented for constructing parallel computers. The architec-
ture exploits optics for its ultra-high speed, massive par-
allelism, and dense connectivity. The processing is based
on a new technique called 2-D symbolic substitution which
can be implemented with very fast optical components.
Two-dimensional symbolic substitution algorithms are de-
veloped for arithmetic/logic operations as well as for com-
plex scientific computations such as matrix algebra and
FFT. The predicted performance of the system is compared
with the performance of existing electronic array processors
and is shown to be potentially superior. The bit-plane ar-
chitecture is shown feasible and economical based on state-
of-the-art optical and electro-optical technologies.

1 INTRODUCTION

Many scientific applications such as signal/image pro-
cessing, finite-element modeling, vision, weather forecast-
ing, and artificial intelligence are data intensive. Conven-
tional computers may not be necessarily efficient in pro-
cessing large amounts of structured data at high speed due
to the limited processor-memory bandwidth, and the slow
communication among cooperating processors in a multi-
processing system.

Optics can provide a quantum leap over electronics in
high-speed computing and massive parallelism[l,2,3,4]. Op-
tics has several important characteristics which make it
more advantageous over electronics as far as massively par-
allel processing is concerned:

l Optical systems are inherently parallel due to their
multi-dimensional and densely interconnected nature.
Lenses, prisms, mirrors, etc. can transfer a large data
plane consisting of millions of resolvable data points
at once. All data points on the plane can be operated
upon concurrently.

l The rate at which data is processed through an optical
system is essentially limited by the rate at which data
is placed in the system and detected at the output.

The actual processing time is mainly light propaga-
tion through optical devices, which in turn implies
higher system throughput.

l Transmission of information via photons requires no
physical conducting material. Therefore, the band-
width is limited only by the modulator technology,
whereas in electronics the bandwidth is limited by
the capacitance and inductance of the physical con-
ductors used[5].

Although optics can provide the parallelism, high speed
processing, and high communication bandwidth needed for
scientific computing, it lacks the programmability, control,
and decision-making features that are well developed in
electronic computers. Thus a computer system that com-
bines the processing power of optics and the programming
flexibility of electronics is highly desirable. In this paper, we
present a bit-plane architecture and an extended 2-D op-
tical processing technique, called symbolic substitution[6],
for supporting massively parallel computations. The sys-
tem processes binary images (images of O’s and l’s) called
bit planes, as fundamental computational entities. Sev-
eral parallel computers have been constructed based on bit
plane processing. These include the MPP[7] CLIP[8], ICL
DAP[9], and to some extent, the Connection MachinellO].
The proposed optical system differs from these existing sys-
tems in many respects. The major differences lie in paral-
lel I/O, non-restricted interconnection pattern, and czpand-
ability as elaborated below:

l Although existing array processors process binary im-
ages in parallel, the image is still loaded into the pro-
cessing elements one column (or one row) at a time,
due to the planar constraints imposed by the elec-
tronic implementation. In contrast, the proposed op-
tical system handles the entire image in parallel, both
at the I/O and processing levels.

l Electronic array processors have restricted interpro-
cessor communication to certain patterns wired into

CH2545-2/88/0000/0018$01.00 0 1988 IEEE
I8

the hardware, typically, two-dimensional grid, so that
an individual processing element (PE) can only com-
municate ouicklv with its four (or eight) nearest
neighbors. This restricts the class of algorithms that
can be efficiently mapped onto the array to those that
emphasize local operations. This restriction is allevi-
ated in the optical architecture since all communica-
tions are done optically, using free space.

l It is difficult to add more processing elements to an
electronic array processor once constructed. Whereas
in the proposed optical system, adding more process-
ing power needs only an increase in the input image
size as shall be seen in subsequent sections.

The paper is organized into six sections. In Sec.2 we
describe the optical bit-plane architecture. In Sec.3 we in-
troduce the 2-D symbolic substitution rules and present
their optical implementations. In Sec.4 we present algo-
rithms for 2-D arithmetic using symbolic substitution. In
Sec.5 we develop parallel algorithms based on 2-D arith-
metic. In Sec.6 we project the performance of the optical
system.

2 THE OPTICAL BIT-PLANE ARCHITECTURE

Figure 1 depicts a block diagram of the basic compo-
nents of the system. It consists mainly of: an input im-
age combiner, a parallel processing unit, an output router,
a plane-addressable memory unit and control unit. While
conventional computers manipulate individual O’s and l’s
as the basic computational objects, the optical architecture
manipulates images of O’s and l’s (or bit planes). Each bit
plane, i, corresponds to a weight factor 2’ in the binary rep-
resentation as shown in Fig.2. Up to three bit planes can be
processed simultaneously. Locally, the system is viewed as a
bit-serial processor, since it involves one-bit arithmetic and
logic operations. Globally, it is viewed as a plane-parahel
processing system, since large sets of operands stored as bit
planes are fed through and executed in parallel.

2.1 The Processing Unit

This unit operates in a SIMD mode, where the same op-
eration is applied to all data entries. The actual processing
is based on the optical symbolic substitution technique[6].
In this technique, information is represented by optical pat-
terns within a two-dimensional image. An optical pattern is
a spatial arrangement of dark and bright spots correspond-
ing to the binary values 0 and 1. Computation proceeds in
transforming these patterns into other patterns according
to predefined symbolic substitution rules. This technique is
sensitive not only to the values of bits carrying information
but also to their spatial locations within the image.

Symbolic substitution consists of two processing steps:
a recognition phase where the parallelism of optics is used to
recognize all the occurrences of a pattern, called the search
pattern, within an image, followed by a substitution phase

where another pattern, called replacement pattern, is sub-
stituted in all the locations of the search pattern. The search
and replacement patterns constitute one substitution rule.
We equip the processing unit with three fundamental op-
erators: the full add, the logical NOT, and the logical AND
which are defined next. Given bit planes A = {aij), B =
{bij}, and C = {cij}, where aij,bij,cij E (0, l}, and
i, j represent the Cartesian coordinates, we define a log-
ical NOT operator NOT(A) = 2 such that A = {a+}
(negation). We define the logical AND operator, denoted
by A, that takes two bit planes as arguments and pro-
duces an output bit plane as follows: A n B = X, where
X = {aij A 6ij). The symbol A represents the conven-
tional logical AND applied to two binary values. We de-
fine the full add operator, denoted by W, that adds three
bit planes and produces two output bit planes as follows:
AH B w C = X, Y, where X = {zij} = {a;j @ bij @ Cij) (sum
bits), and Y = {yij} = {(aij A bij) V (o;j $ bij) A Cij} (carry
bits). The signs @, V represent the logical exclusive or and
logical or respectively. The three fundamental operators
constitute a complete logic and arithmetic set. The optical
implementation of these operators will be presented in the
next section.

2.2 The Input Combiner

The data represented as bit planes is fed to the process-
ing unit through three input planes A-, B-, and C-plane
as shown in Fig.1. The objective of the input combiner is
to perform spatial permutations of the input data in such
a way that overlapping bits from the input planes form
spatial patterns upon which the processing unit applies the
relevant symbolic substitution rules. Depending on the fun-
damental operator needed at a given computational step,
the input combiner performs three data movement func-
tions a~ follows: for the case of the logical NOT, the input

combiner needs only to transmit the input image to the
processing unit without any change in the spatial position
of the data. The logical AND operator is applied to two
bit planes. The corresponding data movement function is
called the 2-D perfect shufle. This function is an extension
of the 1-D perfect shuffle [ll] to bit planes. The 2-D per-
fect shuffle permutations affect only the row position of the
data leaving the column position unchanged. A pictorial
description of the 2-D perfect shuffle is shown in Fig.3 for
a 3 X 3 input planes.

The full add operator is applied to the three input planes.
The data movement function needed in this case is called
the 2-D S-shufie permutation. This function is also a 2-D
extension of the 1-D 3-shuffle permutations[l2]. The per-
muted output is formed by alternating the rows of the 3
input planes.

2.3 The Output Router

This unit directs the processed data to its appropriate
destination. It accomplishes this through three data move-
ment functions, namely: feeding back the carry bit plane

19

-. Data path
-*: Control path

Optical Interconnects

Substitution)

t
I

:--

m/1

Controller m-J

Retrieve +- Memory Unit +- Store

Fig.1 The Architecture of an optI :a bit-plane processor array

resulting from a full add operation, transferring the results
to the memory for storage, and shifting the processing unit
output vertically or horizontally by a variable number of
pixels. The shifting functions enable communication be-
tween pixels. These shifting functions add a tremendous
processing power and flexibility to the system. Many alga
rithms are recursively defined, where the same processing
steps are applied to a reduced set of data points at each
iteration. Such algorithms can be executed more efficiently
by including the shift functions.

The memory unit is assumed to be random-access plane-
addressable. It is organized such that data is retrieved and
stored in plane format. The execution sequence and the
data flow are controlled by a very fast controller that gen-
erates control signals to different units during the execution
of a program code. It should be noted that the 2-D paral-
lelism is maintained throughout all the processing stages of
the system thus aliowing it to support massive parallelism. ____----- -------- --------

4 1 0 0

0 1 1
0

$a@@
1 0

7 O 1 1 l 1
1 0

5 1 0 l 1
4 1 0 0

--------- --a----- ----m-e-
s 4 + 1

Data plane Bit plane 2’ Bit plane 2l Bit plane 2’

Fig.2 Data representation as a stack of bit pIanes

Bit plane A

Bit plane B

Fig.3 The 2-D perfect shuffle operation.

3 OPTICAL IMPLEMENTATION

The first consideration in implementing the system, is
the optical encoding of the binary values 0 and 1. There are
several properties of light that can be used. These include
light intensity, polarization, and optical signal phase. A
possible representation is to encode the logic value 0 by
two pixels dark-bright, and the logic value 1 by the inverse
pattern, bright-dark as shown in Fig.4. In what follows, we
focus on the conceptual issues in implementing the system.

m m
0 1

Fig.4 Light encoding of the binary values 0 and 1

20

3.1 The Input/Output Data Routing

The data movement functions assumed by the input
combiner and the output router are all space-invariant.
A wide variety of methods can be imagined for realizing
these functions. Electrically controllable optical devices
such as Wollaston prisms, halfwave plates, and polariz-
ers can be used to implement the interconnection patterns
required[l3]. Lohmann[lJ] has given an optical setup for
performing the 1-D perfect shuffle. The same principle can
be extended to Z-D perfect shuffle. The 2-D 3-shuffle can
be implemented in 3 steps as shown in Fig.5. We mag-
nify the input arrays to the total size of the 3 arrays, and
then by appropriate masking, we achieve the permutations
needed. The setup shown in Fig.5 can be extended to 2-D
by replicating the hardware n times for an n x n input bit
planes. There are other methods that have been reported
for implementing the perfect shuffle permutations [14].

Input c

Input A

Input B

Magnification Masking

Fig.5 The principle of an optical Z-D 3-shuffle.
The shuffling is done by interlacing the input
arrays

Halfwave plates and polarizing beam splitters can be
used to control the pathways of the light beam at the out-
put router. The main component of such a unit is the im-
age shifter which is able to shift a bit plane by an arbitrary
number of pixels. The direction and amount of shift are
program dependent, and are supplied to the shifter as con-
trol signals. This shifter can be implemented using birefrin-
gent prisms and electro-optical cell[l3], or using real time
holograms in a photorefractive media[l5].

3.2 The Symbolic Substitution Processing Unit

This unit is based on the optical symbolic substitution
for performing arithmetic and logic. Symbolic substitution
can be formally defined by a three-tuple, S = (R, P,Q)
where R is a one-to-one mapping from the domain P to the

range Q; R : P --t Q. R is the set of substitution rules

R= (rl,rz,..., r,) where n is the total number of rules. P

is the set of search patterns and Q is the set of replacement
patterns. Each substitution rule ri can be defined as:

ri(Pj)= qQj i,‘:%I
{

. .

for i = 1 , . . . , n and 4 representing an empty pattern (a
number of dark pixels).

We derive the symbolic substitution rules required to
implement the fundamental operators from their sssoci-
ated truth-table specifications. The input combinations of
these truth tables constitute the search patterns, and the
table entries represent the replacement patterns. The log-
ical NOT operator manipulates one bit pattern, while the
AND and the full add manipulate 2 and 3 bits respectively.
Therefore, a total of 14 substitution rules are required to
implement the fundamental operators as shown in Fig.6.

rl carry
Sum ------

---------7
I ,

rLw

:
:

-------v-J
----------7

8

l5
!!!liid; --------------A

____----------

(a) Optical substitution rules for the full addition

(b) Optical substitution rules for the logical AND

(c) Optical substitution rules for the logical NOT

Fig.6 Optical symbolic substitution rules for full
add, logical AND, and logical NOT operators

To illustrate the optical implementation of the two pro-
cessing steps involved in symbolic substitution let us con-
sider the implementation of substitution rule rs in Fig.6.
The search pattern Ps of rs can be described by :

83 = (P,“, w (2)

21

where Ps” and I’s’ are the dark-pixel pattern and bright-
pixel pattern of Ps respectively (Fig.‘la). These latter can
in turn be described by a 2-D position vector with discrete
components. Each component represents the location of a
dark (or a bright) pixel in the Cartesian plane:

p3O = {(~l,Yl)(~Z,Y1)(Z3,Y3)} and

p3l = {(a’, Yl’) (x2’, Y2’) (G’, Y3‘)) (3)

where (xi, Yi), (xi, yi’) are the Cartesian coordinates of the
i-th dark pixel and the i-th bright pixel respectively. Thus
PS can be expressed by:

ps" = (0,0)(1,1)(0,2), Psl = (1,0)(0,1)(1,2) (4)

We extend the implementation method described in Ref.
[16] to implement the new substitution rules introduced in
Fig.6. Since we are using dual-rail coding (the value and its
complement), it is sufficient to recognize the dark-pixel pat-
tern or the bright-pixel pattern of a search pattern to com-
pletely recognize it!lG]. We choose to recognize the dark-
pixel pattern as this appears more convenient for practical
realization. The recognition phase is illustrated in Fig.7.
In this phase, the input plane must be replicated as many
times as. there are dark pixels in the search pattern. Each
copy is associated with one dark pixeI. Therefore the in-
put plane of Fig.7 is replicated into 3 copies. Copy 1 is
associated with dark pixel (zi, yr), copy 2 with (~2, yz) and
copy 3 with (23,~s) as shown in Fig.7b. Then each copy i
is shifted by -xi along the X-axis and -yi along the Y-axis
in such a way that its associated dark pixel coincides with
the origin (Fig.‘lc). Next, the shifted copies are superim-
posed(Fig.7d). The superimposed image is then inverted
using an optical NOR-gate array(l6] and AND-ed with a
mask M as shown Fig.7e. The presence and the location
of the search pattern in the input image is indicated by
a bright pixel in the masked output (or the recognition
plane) as shown in Fig.7f.

The substitution phase is shown in Fig.8. In this phase,
the recognition plane is replicated as many times as there
are bright pixels in the replacement pattern. In our exam-
ple, the recognition plane is replicated twice as shown in
Fig.8b. Each replica i is associated with the i-th bright
pixel of the replacement pattern. Then each replica is
shifted by +z: along the X-axis, and +y,! along the Y-axis
such that its associated bright pixel overlays with its proper
location in the replacement pattern (Fig.Bc). Then all the
shifted copies are superimposed to form the output image
as shown in Fig.8d.

The method just outlined is used to process one substi-
tution rule. Generally, several substitution rules are simul-
taneously applied. In order to process several rules con-
currently, the output of the input combiner is replicated a
number of times equal to the number of rules to be acti-
vated at a given stage of computation (for example, to add 3

(a) Search
Pattern

‘Reference

plane

Shift

I---

\ ;

No shift

(b) RepIication (c) Shifts (d) Superimposition

. . . .
. . . . b . . .
.

-. m-t . m --, . I m .
.

- . .C . .
.

Superimposed Mask M
image

(e) Inversion (f) Masking

Fig.7 The Optical image processing steps needed to
implement the recognition phase of symbolic substitution

(a) Replacement
Pattern

Reference

Shift ’ . 1 1

f-- .“::
. I

. Im.

. . . I . .
/

. . m
. . c . - - .I

. . _ _ _.
. l l 1 .

. . .

I . . .
I . - .

Recognition
.

plane
. . h b .
. Output image
. . . .

No shift
(b) Replication(c) Shifts (d) Superimposition

- Shift operation (shift by one pixel)

Fig.8 Optical processing steps needed to implement
the substitution phase of symbolic substitution

22

bit planes, we need to replicate the arranged input 8 times
corresponding to the 8 substitution rules associated with
the full add operator). Each copy is sent to one rule, after
the necessary substitutions, the outputs of all the active
rules are optically combined to form the processed result
as shown in Fig.9.

Output of the

II Recognize Scriber II

I

t

Image
combiner

Fig.9 The optical symbolic substitution
processing unit

3.3 The Memory Organization

Spatial light modulator or bistable optical technologies
[l] can be used for single-plane temporary storage such as
the input and output planes. However, this will not be suf-
ficient to implement a memory unit able to hold a large
number of bit planes. Volume holograms, with their ability
to store information in 3-D, show a great potential for a
dramatic increase in optical storage density. Photorefrac-
tive materials such as Lithium Niobate and Potassium Nio-
bate are also attractive new candidates for real-time optical
memory.

4 2-D ARITHMETIC/LOGIC ALGORITHMS

The proposed architecture exploits image (or spatial)
parallelism, which means the simultaneous processing of
the entire binary images at each computational step (or
cycle). To enforce this capability, we identify high-level
operations that can be simultaneously applied to large sets
of data represented in planes. The use of such constructs
to formulate parallel algorithms will provide an efficient
algorithm-architecture mapping.

In what follows, the boldface notation i.e. X, Y etc.
denotes a data plane (or a stack of bit planes), and the
italic notation (i.e. X,Y) designates a single bit plane.
The notation A t X is interpreted as data transfer from
memory location X to input plane A. X c Y denotes
data transfer from memory location Y to X. This involves
loading Y, going through the processing unit without any

effect,, and storing it in X. C t 0 is interpreted as loading
the C-plane with a zero bit plane (all entries are 0). Loop
indices and parameter calculations such as “for i = a to
b” should be interpreted as control instructions that are
executed by the control unit.

4.1 2-D Addition/Subtraction

This operation refers to the addition (subtraction) of
corresponding elements of two n x n data planes X and Y

of integers. The result is a data plane S = { sij }, where
Sij = Xij $: Yij for i,j = 1,. . . ,n. LetXbeannxnq-bit
planes, Xq-l,Xq-l,. . . , X0 where q is the precision of the
operands, X0 being the least significant and X,-l being the
most, significant bit planes respectively. Similar considera-
tions take place for the data plane Y, the procedure is as
follows:

Procedure 2-D Addition(X,Y)

begin

cto;

for k := 0 to q - 1 do

A +- X,;

B + Yk;

Sk, Gout + Au BuCi,

sq +- c;

end 2-D Addition

The notation Sk, Gout t A &I B IJ Ci,, in the above pro-
cedure, designates the addition of bit planes A and B to-
gether with the previous carry Ci,; the sum bit plane is
to be stored in Sk and the resulting carry bit plane, Gout,
is routed back to input plane C (Ci, and Coat represent
the same physical location). The procedure starts by ini-
tializing the C-plane to zero, and loading bit planes X0,
YO into A-plane and B-plane respectively. The processing
unit applies the full add substitution rules simultaneously
to the 2-D 3-shuffled plane. The sum bit plane is stored
in SO, and the carry bit plane is fed back to the C-plane
for the next, iteration, while the memory unit loads the bit
planes X1 and Yl in the A-plane and B-plane respectively.
The whole process continues until X,-l and Yp-l are added
and the sum &,Sl, . . . ,S, stored as a stack of bit planes
in the memory. The addition of two q-bit planes is done
in q iterations, regardless of the number of operands to be
added.

Representation of numbers in two’s complement form
allows 2-D subtraction by adding few additional steps to
the 2-D addition procedure. The pairwise subtaction of
two data planes X,Y is done by first forming the two’s
complement of the subtrahend Y, then add it to X, using
the 2-D addition procedure. The two’s complement of data
plane Y is obtained by applying the substitution rules for
the NOT operator and the 2-D addition procedure.

23

4.2 Z-D Multiplication

This operation refers to the multiplication of correspond-
ing elements of two data planes. Let X and Y be as de-
scribed previously, then the product P is a 2q-bit planes
P = P2,-1P2,-2.. . PO, where pij = Xij x Yij. This opera-
tion uses the logical AND and the full add operators. The
complete procedure is as follows:

Procedure 2-D Multiplication(X,Y)
begin

for lc := 0 to 2q - 1 do
9 +- 0;

forI:=Otoq-ldo
c + 0;
for m := 0 to q - 1 do

A t X,;
B + Yr;
B+AnB;

A + Pm+z;
P m+l,C + AkJBkJC;

endfor;
P q+l +- c;

endfor;
end 2-D Multiplication

The time complexity of the 2-D multiplication is O(q’),
independent of the number of pairs to be multiplied. Note
that, unlike the conventional shift and add multiplication
algorithm, we did not need to shift the previous partial
product to generate the current one. Instead, we start the
addition at the bit plane corresponding to the amount of
shift required.

4.3 2-D Shift

We define two operations for shifting a data plane by
a variable number of pixels. The shift considered here is
the logical shift, where columns (or rows) of OS enter the
opposite direction of the shift. Given P = P,-lP,-z.. . PO,
and X = Xq-1Xq-2.. . X0, we define a horizontal shift op-
eration, denoted by H,(P), to be the data plane P shifted
in the X-axis by cr columns (+CY for positive shift, and --a
for negative shift) as shown in Fig.lOa. The shifted plane
can be either stored in itself or in a different memory loca-
tion, therefore the notation X t H,(P) is interpreted as
shifting the data plane P by (Y columns and storing it in
X. Similarly, we define the vertical shifting operation, de-
noted by V,(P), to be the data plane P shifted along the
Y-axis by (Y rows (+cu for upward shift, and -a for down-
ward shift) as shown in Fig-lob. These shift operations are
implemented by the shifter unit.

4.4 Summation of nz Numbers

This refers to calculating the sum of all the elements
of an array, Let the initial array of data S contain n2
elements and be stored as bit planes : S,-,S,-,. . . So. The
algorithm is composed of two phases. In the first phase,
we sum the elements of S along the rows to produce one

row of accumulated sums. In the second phase, we sum the
elements of this row along the columns to produce a single
integer whose value is the sum of all the data entries of S.
The detailed procedure is as follows:

Procedure Sum(S,X,Y)
begin

for k = 1 to logzn do
ff := 425

/* Loop 1 */

p := xi=: (n/2”);
x + V-p(S);

v+#9 1x1 i
y + V+a(S);
S t 2-D Addition(X,Y);

endfor /* end Loop l*/
for k = 1 to log,n do

a := n/2k;
/* Loop 2 */

/3 := xi:: (n/2k);
X + H+(S);

H+dX);
Y + H+,(S);
S c 2-D Addition(X,Y);

endfor /* end Loop 2 */
end Procedure Sum

There are two other useful operations that are similar
to the Sum procedure namely, Row-Sum and Column-Sum.
Row-Sum sums the elements of data plane along the rows,
thus reducing a data plane to one row of accumulated sum,
while all the other rows contain OS. Column-Sum accumu-
lates the data along the columns thereby producing a new
plane whose first. column represents an accumulation of alI
the columns, and OS in the rest. In fact, “Loop 1” and
“Loop 2” in the above procedure implement Row-Sum and
Column-Sum respectively.

Sl PI3 PM A4

Plane P pa1 Paz P23 Pa,

p31 P32 psr Pss

p41 p42 P43 ptr

H+z(P) H-Z-
(a) The horizontal shift (Shown for a = f2)

I
V-z(P)

%I p32 pss p3
P41 p42 pt3 Prr

El

00 00 v+a (PI

00 00 I
(b) The vertical shift (Shown for a = f2)

Fig.10 The horizontal and vertical shift functions

24

5 MAPPING PARALLEL ALGORITHMS

Data movement can be used to characterize an algo-
rithm running on a parallel system. Consequently, parallel
algorithms can be classified in two major classes : those
with local interconnections and those with global intercon-
nections 1121. The optical architecture offers a great flexi-
bility in handling both local as well as global computations.
In what follows, we use the 2-D operations introduced pre-
viously to construct parallel algorithms that can be directly
mapped onto the optical architecture. The first example is
for finding the product of two matrices which exhibits lo-
cal and intensive computations. The second example is for
computing the 2-D fast Fourier transform which represents
a typical example of global communication.

5.1 Matrix Multiplication

Let X and Y be n x n matrices (assuming same size
for simplicity) then their product X x Y = Z is an n x n
matrix whose elements are given by:

k=n

zij = c XikYkjt i,j = 1 ,...,n (5)
k=l

We assume that the matrix X is stored as n x n data
planes : X”, X”-‘, . . . , X’, in which each column of x’ is
equal to the i-th row of X, for i = 1, . . . ,n. Let XL =
{Xij’}, where Xijk = xkj. Let Tk be the matrix formed by
the 2-D multiplication of matrices Xk and Y, then Tk =
{tij}, where tij = Xij’Yij = xkjyije Thus summing the el-
ements of each column of Tk using the Row-Sum procedure
will produce a matrix say Zk whose first row represents the
first row of matrix Z:

i=n
zk=xtij, j=l,...,n

i=l
(6)

where the first row of Zk represents the first row of Z and
all the other rows are OS. By repeating these steps for all
values of k (k = l,... ,n), we produce n matrices Z,,
L-1. . . . , Z1. The first row of each matrix Zi represents
the i-th row of the final product matrix Z. We shift these
matrices by appropriate shifts, and add them pairwise to
produce the final matrix Z:

Procedure Matrix Multiply(Z,X,Y)

begin

for k := 1 to n do

Tk -2-D Multiplication(X”, Y);

& t- Row-Sum(Tk);

endfor

for k := 1 to n do

V(1-k)(Zk);

for k := 1 to n do

Z +2-D Addition(Z, Zk);

end Matrix Multiply

The time complexity of the algorithm is O(n(qlog,n +
q’)), where q is the operand length. It can be seen that
the time complexity of this algorithm is logarithmic in n,
as opposed to cubic in n for the conventional triple loop
matrix multiplication.

5.2 2-D Fast Fourier Transform

FFT is a transitive function since every output is a non-
trivial function of every input. One would expect such func-
tions to generate global communications. A two-dimensional
Fourier transform can be mathematically defined as follows:

X(kl,kz) = 2 2 x(n~,n~)W”akzWnlkl
r&1=1 np=l

(7)

for kI,kz = l,..., n. This is equivalent to :

X(h, k2) = FFT,, (FFT,,z(nl, n2)) (8)

This form gives rise to a 3-D signal flow graph, which if
calculated in a conventional way, would take O(n2 log, n),

by first applying 1-D FFT rowwise(columnwise) n times
and then applying, on the transformed sequence, 1-D FFT
columnwise (rowwise) n times. In [Ill, a single stage per-
fect shuffle interconnect and a set of multiply-add mod-
ules were introduced for in-place computation of 1-D FFT.
We present here an extended algorithm for computing 2-D
FFT, using the 2-D operations introduced in Sec.4 and the
2-D perfect shuffle function described in Sec.2.

In the following algorithm, we assume the data points X
are stored in two data planes, U, for the upper portion, and
L for the lower portion. Wi are data planes, corresponding
to the weights of the i-th stage as indicated in Eq.7, S,,
Sl and T are scratchpad planes used to hold intermediate
results.

Procedure 2-D FFT(X)

begin

for k := 1 to log,n do

TJ + V-n/n(X) ;

v+n/a (U) i

L + V,n/P (W;
T + 2-D Multiplication(L, Wh);

S, c 2-D Addition(U,T);

Sr e 3-D Subtraction(U, T) ;

X e 2-D Perfect Shuffle(S,,Sr);

endfor
end Z-D FFT

The expression X + 2-D Perfect Shuffle(S,, Sl), in the
above procedure designates the 2-D perfect shuffle of the
matrices S, and St. The resulting transform is in reverse

25

binary order. The above algorithm computes the column-
wise (rowwise) computations. We have to restore the nor-
mal order before we proceed for the rowwise (columnwise)
computation. This is done by O(logrn) permutations in-
volving only data movement. The algorithm computes the
2-D FFT in C(g2 log2 n) iterations. The inverse FFT can
be expressed in the same formalism as the FFT, and there-
fore can be computed by the same algorithm.

6 PERFORMANCE PROJECTION

We project the performance of the optical architecture
by estimating several performance metrics and compare
them with those of commercial electronic array processors
such as the MPP, CLIP, DAP and the Connection Machine.

6.1 Asymptotic Performance

Hockney[l7] introduced a performance metrics called:
ri,f to give a first-order characterization of the asymptotic
performance of a parallel computing system. The parame-
ter r;,f gives a quantitative measure of the maximum rate
of computation in units of equivalent scalar operations per-
formed per second. For an array processing system, rinr is
evaluated as follows[171:

n2
rinf = 1 (9)

bray

where tarroy is the time taken to execute one operation on
all the PEs, this is usually taken as the clock period, and
n2 is the total number of PEs. Assuming an array size of
1000 x 1000, and 10 Mhz rate, ri,f is then 10” bit opera-
tions/sec for the optical system. The MPP with an array
of 128 x 128 PEs and 10 Mhz rate has achieved 6 x 10’ 8-bit
operations /sec. The CLIP with a 96 x 96 array and a 25
psec cycle time has achieved 3.7 x 10’ bit operations/set.
The DAP with a 64 x 64 array and 0.2 psec cycle time,
was described to achieve 10’ 32-bit operations/set. The
Connection Machine with 65,536 PEs and a 0.5 psec cycle
time can achieve 13 x lOlo bit operations/set (the CM-2
model[l8]). It can be seen that the potential throughput
of the optical system can be at least 3 orders of magnitude
higher than any existing array processor.

The half-performance length: nl12 determines the amount
of the hardware parallelism in a computer architecture[l7].
For a nonpipelined array processor, the factor nli2 is de-
fined to be the vector length required to achieve half the
maximum performance(ri,l/2). This can be easily calcu-
lated for all the systems since half the vector is simply half
the array size, hence nllz = 5 x lo5 for the optical archi-
tecture, 8192 for the MPP, 4608 for the CLIP, 2048 for the
DAP, and 32768 for the CM-2.

0.2 Communication and I/O Capabilities

The parameters rinr and nl/2 do not completely reflect
the effectiveness of a parallel computer. Communication

plays a crucial part in determining the overall system per-
formance. There are many communication metrics in the
literature[l9] we choose the most widely used for our pur-
poses:

Communication bandwidth is the maximum number of
messages that can be simultaneously exchanged in one time
step. Hence the bandwidth of the optical system is n2, since
up to n2 PEs can receive and send data at a time. The data
transmission in the MPP and the CLIP is one column at
a time, therefore their bandwidth is n, the DAP on the
other hand transmits data in a row-parallel fashion which
amounts to the same bandwidth factor n. The Connection
Machine has a maximum sustained communication band-
width of 2n2.

The diameter is the maximum number of communica-
tion cycles (or links) needed for any two PEs to communi-
cate. For the optical case, this factor is 1, since we allow any
number of shifts in either directions in one cycle time. The
MPP and the DAP are mesh-connected and therefore have
a diameter of 2(n - 1). The CLIP has a hexagonal connec-
tivity and therefore has a diameter of nfi. The diameter
of a Connection Machine of size n2 PEs is O(log, n).

Broadcasting is the ability to send the value in a certain
PE to all the other PEs. The amount of communication
cycles to achieve this is considered a measure of communi-
cation performance. This value is O(log, n) for the optical
system, O(n) for the DAP, MPP, and CLIP, and O(log, n)
for the Connection Machine.

Unfortunately no metrics exist that measure the I/O ca-
pability of a parallel computer. In current implementations
of the MPP and the CLIP, I/O is handled in column-parallel
fashion while the DAP is row-parallel. By contrast with the
optical system, I/O activities are plane-parallel. This gives
the optical system an I/O speedup of n over the electronic
counterparts. Table 1 summarizes the various performance
metrics values considered above.

7 CONCLUSIONS

We have proposed a bit-plane architecture that takes ad-
vantage of many useful properties of optics for parallel pro-
cessing. We have discussed its implementation using state
of-the-art optical devices. We introduced 2-D symbolic sub-
stitution rules for arithmetic/logic operations. These rules
are used for parallel SIMD computation. Furthermore, we
presented data-parallel constructs to implement parallel al-
gorithms on the proposed architecture. The performance of
the proposed optical array processor has the potential to be
at least thousand times higher than any existing electronic
array processor.

ACKNOWLEDGMENTS

This research was supported by an ONR Contract No.N14-
86-K-559 and in part by a NOSC Contract No.85-D-203.
The authors would like to thank the referees for their valu-
able suggestions.

26

Table 1: Performance comparison of the optical bit-plane architecture with electronic array processors

Computing
System

Performance Metrics
Maximum 1 Parallelism 1 Diameter 1 Bandwidth 1 Broadcasting 1 I/O Cycle

Architecture

Note: n* is the array size (total number of PE’s)

References

Ill

PI

PI

PI

151

PI

VI

PI

PI

T. E. Bell, “Optical computing: a field in flux,” IEEE
Spectrum, pp. 34-57, August 1986.

K. Hwang and A. Louri, “New symbolic substitution
algorithms for arithmetic using signed-digit represen-
tation,” In Proc. Sot. of Photo-Opt. In&r. Eng., High
Speed Computing (Los Angeles), Jan. 10 - 14, 1988.

A. Louri and K. Hwang, “Parallel architectures for op-
tical computing,” Proceedings Third SIAM Conj. on
Parallel Processing and Scientific Computing (Los An-
geles), Dec. 1 - 4, 1987.

A. A. Sawchuk and T. C. Stand, “Digital optical com-
puting,” Proceedings of The IEEE, vol. 72, pp. 758-
779, July 1984.

K. C. Saraswat and F. Mohammadi, “Effect of scaling
of interconnections on the time delay of VLSI circuits,”
IEEE Transaction on Electron Devices, vol. ED-29,
no. 4, pp. 645-650, 1982.

A. Huang, “Parallel algorithms for optical digital com-
puters,” in Proceedings IEEE Tenth Int? Optical Com-
puting Conj., pp. 13-17, 1983.

K. E. Batcher, “Design of a massively parallel pro-
cessor,” IEEE Transactions on Computers, vol. C-29,
pp. 836-884, Sept. 1980.

M. J. Duff (Fu and Ichikawa, eds.), CLIP 4 : Special
Computer Architecture for Pattern Recognition. CRC
Press, 1982.

S. F. Reddaway, “DAP - a distributed array proces-
sor, n in First Annual Symposium on Computer Archi-
tecture, (Florida), IEEE/ACM, 1973.

I101

1111

1121

PI

1141

P51

PI

1171

I181

1191

W. D. Hillis, The Connection Machine. MIT Press,
Cambridge, Mass., 1985.

H. S. Stone, “Parallel processing with the perfect
shuffle,” IEEE Transactions on Computers, vol. C-20,
no. 2, pp. 153-161, 1971.

K. Hwang and F. Briggs, Computer Architecture and
Parallel Processing. McGraw-Hill, New York, 1984.

A. W. Lohmann, “What classical optics can do for
the digital optical computer,” Applied Optics, vol. 25,
pp. 1543 - 1549, 15 May 1986.

K. H. Brenner and A. Huang, “Optical implementa-
tions of the perfect shuffle interconection,” Applied Op-
tics, vol. 27, pp. 135 - 137, 1 Jan. 1988 1988.

T. J. Drabik and S. H. Lee, “Shift-connected SIMD
array architectures for digital optical computing sys-
tems, with algorithms for numerical transforms and
partial differential equations,” Applied Optics, vol. 25,
pp. 4053-4064, Nov. 1986.

K. H. Brenner, A. Huang, and N. Streibl, “Digital op-
tical computing with symbolic substitution,” Applied
Optics, vol. 25, pp. 3054 - 3060, 15 Sept. 1986.

R. W. Hackney and C. R. Jesshope, Parallel Com-
puters: Architecture, Programming and Algorithms.
Adam Hilger Ltd, Bristol, 1981.

Thinking Machine Corporation, “Connection machine
model CM-2 technical summary,” Tech. Rep. Series
HA87-4, Thinking Machine Corporation, 1986.

T. Y. Feng, “A survey of interconnection networks,”
Computer, pp. 12-27, December 1981.

27

