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ABSTRACT

In this paper, we present a new approach to designing optical digital arithmetic systems. We present new arithmetic
algorithms based on a modified signed -digit number representation. New Signed -digit symbolic substitution rules are introduced
to implement them. These signed -digit arithmetic algorithms are well suited for optical implementation because, of the confined
carry propagation within adjacent digits. We present an optical architecture of such an arithmetic processor. The proposed
optical arithmetic processor can potentially achieve 0(102) to O(103) improvement in speed as compared with conventional
electronic arithmetic processors.

i_.INTRODUCTON

The inherent parallelism, high speed, noninterfering communication, and wide bandwidth of optics show hope for significantly
improving the speed of arithmetic computations in future optical computers. In this paper, we proceed in a two-step approach:
first, new algorithms are developed for digital arithmetic operations that are amenable to optical implementation; then, we
present a new arithmetic architecture and discuss its implementation and performance based on the state -of -the -art optical
technology.

Several number representations have been investigated in the past for optical arithmetic. Residue number system has been
considered'. The advantage of usig residue numbers lies in performing carry -free addition, subtraction, and multiplication.
However, this system suffers from the difficulties of performing division, an comparing two numbers. The residue number
system is an integer field, however the results of division are not always integers and therefore do not always have a residue
representation. Furthermore, it is not easy to determine the sign after a subtraction operation. A second number system known
as DMAC has been introduced2. Its major drawback is the need for analog -to-digital conversion required to convert the mixed
binary to pure binary numbers. This postprocessing step offsets the speed gained by optical processing.

hi this paper, we use a modified signed -digit (SD) number representation originally proposed by Avizienis3, and lately
introduced to optics by Drake et al4 to perform optical arithmetic computations. The SD number representation is a redundant
system with a digit set of {1, 0,1 }, where 1 stands for -1. The redundancy overcomes the strong interdigit dependency that
results in carry propagation manifested in conventional binary representation. Carry propagation is then limited to two adjacent
digits in an SD system. This makes it possible to perform addition and subtraction of two SD numbers of any word length in
parallel.

Holographic optical elements, prisms, and optical bistable devices were proposed for implementing the SD addition and
subtraction optically4. Mirsalehi and Gaylord3 proposed a direct table look -up method for implementing the SD addition.
In this paper, we implement the SD addition, subtraction, multiplication, and division using optical symbolic substitution
technique extended from the work of Huangs. We introduce a new set of bit -wise, signed- digit, symbolic substitution rules. The
use of signed -digit number representation in conjunction with these new symbolic substitution rules for implementing optical
operations will yield an optical arithmetic processor with a tremendous speed improvement over existing electronic counterparts.

2. SIGNED -DIGIT ARITHMETIC ALGORITHMS

The modified SD number system has a digit set of {1, 0,1 }. Given an SD number Y = yn -iyn -2 ' yoy -1 y -m, the
algebraic value of Y is evaluated as :

i=n-1
Y= x2i, yiE{I,0,1} (1)

In this number system, there is no need for an explicit sign digit, in fact yn_1 determines the sign of Y. Hereafter, we
concentrate on integer SD numbers for addition /subtraction and multiplication and on normalized fractions for division. We
present below algorithms for various SD operations. The SD addition is generalized from Avizienis3. The SD multiplication
and SD division algorithms are newly developed.
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2.1 SD Addition and SD Subtraction

The addition of two n -digit SD integers, X = x, _1 xo and Y = yn -1 yo results in an (n + 1) -digit SD integer,

S = ssn_1 so. Three successive steps are needed to perform the totally parallel addition. At the first step, the following

equation xi + y; = 2t; +1 + w ;, is performed at the i -th digit position, for i = 0, ... , n -1. where w; and t ; +1 are called the interim

sum digit and the transfer digit respectively. These variables assume the following values:

1 ifx;+y;=1
w;= 0 iflx;+y;l#1

I ifx;+y;=1

At the second step,

1 if to; +t;=1
w; 0 iflw;+

1 ifw;+t;=1

The third step provides

s;=w; { t;=

ti+1 =

the following equation

tip #1 ti+1 =

the final sum digit:

1 if tul +t;>1
o if w; + t; = 0
1 if w; + t; < 1

1 ifx;+y;?1
0 ifx;+y;=0
1 ifx;+y;<1

w; + ti = 2t; +1 + w;, is performed with :

1 ifw; +t; =2
o ifw; +t1 2

1 ifw; +t; = -2

(2)

(3)

(4)

Figure 1 shows a totally parallel adder constructed by three types of arithmetic Cells whose truth -tables are given in Table
1. There is no carry propagation beyond adjacent stages in the SD adder of Figure 1. Any sum digit is a function of only two
adjacent operand digits. SD subtraction is performed by first negating the sign of the nonzero digits of the subtrahend, then
perform the SD addition of the two operands. Example 1 illustrates the SD addition of ( -7)10 = (1011) and (3)10 = (0101).
The result is a 5 -digit SD integer S = (00100) = ( -4)1o.

Figure 1. A parallel circuit for optical signed -digit
addition (shown for operand length n = 3)

Example 1(SD Addition)

X = (1011).d

+

1 o 1 1 = ( -7)10

Y = (olol),d = o 1 o 1 = (3)10

Stage 1 0 1 1 1 o

1 1 1 1 o t1 +1

Stage2 0 T 0 0 0 0

0 1 0 T 0 0 t4,

Stage 3 0 0

Z = (ooio0).d = (-4),0

0
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2.2 SD Multiplication

The multiplication of two n -digit SD integers, X,Y produces a 2n-digit SD integer P = P2n- 1P2n -2 Po This product can
be expressed as:

P=yn-1 *X X2n-1+...+ yl*XX21+yo*XX2o

where y; is the i -th multiplier digit, and * is the SD AND operation defined as follows for any x, y E 0,0,11:

1 ifx=y=1
x*y= 0 if(x=0)V(y=0)

I if(x=1ny=1)V(x=lny=1)

(5)

(6)

where V, A represent the logical or and the logical and. Using a nested notation, we can rewrite Eq. (5), in the following form:

P = 2n-1 X (yn -1 * X + 2 -1 x (yn -2 * X+ ...+ 2 -1 x (yl * X + 2 -1 x (yo * X)) ...)

From Eq. (7), we deduce a recursive formula to compute the i -th partial product P;:

P1= (P;_1 +y:- 1 *X)x2 1, i= 1,...,n, Po =O.

(7)

(8)

The final result is P = P x 2n -1 after n iterations. The product is obtained by a sequence of right shifts and additions only. At
each iteration, we generate one digit of the product starting from the least significant digit. The SD multiplication algorithm
has a time complexity O(n), where n is the precision of the multiplier. Example 2 illustrates the SD multiplication process
with two SD numbers X = (1110) and Y = (11010) to yield a product P = (0010111100).

Example 2 (SD multiplication)

Multiplicand X = (11110)ad = (6)10 Multiplier Y = (11010)ad = ( -22)10

Step

á =0

Digit Quantity SD representation

Po 00000
Yo = O yoX 00000
add Po + yoX 00000
shift Pi 000000

á = 1 y1 = 1 y1X 11110
add P1 + y1X 0010100
shift P2 0010100

i = 2 y2 = 0 y2X 00000
add P2 + y2X 00111100
shift Ps 00111100

i = 3 Ys = 1 ysX 11110
add Ps + ysX 000111100
shift P4 000111100

i = 4 y4 = y4X 11110
add P4 + y4X 0010111100

Final product = 0010111100
= (- 132)10

2.8 SD Division

To take advantage of the parallel addition and the fast multiplication schemes described above, we developed an algorithm
for SD division based on convergence division method7 that uses only SD addition, SD multiplication, and shift operations.
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The algorithm generates the quotient Q = X/Y without a remainder. The operands X, Y are fractions in normalized form:
0.5 < XI < IYI < 1, to avoid overflow and exception cases. The algorithm consists of finding a sequence of multiplicative factors
mo, m1, ... , mn such that Y x at-20;m0 converges to a definite limit k (within an acceptable error criterion). The procedure
consists of implementing the following recursions, starting with Xo = X and Yo = Y:

X:+í=X:xm., Y+1=Y,xm; (9)

such that for a small n : Q = x - xx(n' -0 m;) The final quotient Q is a and k -+ 1. The recursive formula, Y, +í = Y, x m ;,
Y Yx(fr_o'^:)

can be written as:

Y+i = 0(Y) (10)

We desire the function O(Y) to converge to 1. There are several iterative methods that can be devised to enable a sequence
0(Y) to converge to 1. Krishnamurthys has studied the quadratic convergence form and has found that, in order for x m; to
quadratically converge to 1, m; should be :

m;=(2-Yi) (11)

This implies that the sequence of multipliers, m; for i = 0,1, 2, ... ,n can be easily obtained by two's complement operations.
The final quotient becomes Q = X,,. The complete SD division algorithm is specified in Figure 2. The following example
illustrates the steps involved in finding the quotient of X = (0.11) and Y = (0.11) using the SD division algorithm. Given the
dividend X = (0.10) = (- 0.5)10 and the divisor Y = (0.11) = (0.75)1o, for a 16-bit precision, the algorithm finds the quotient
Q = X/Y = (1.111011101111111) = (- 0.66664)10 after 3 iterations.

Example 8 ( SD division)

Dividend X = (0.10),d = (- 0.5)ío Divisor Y = (0.11),d = (0.75)ío

Iteration
step

Multiplicative
factor

Accumulated
denominator

Accumulated
numerator

i =0 m0 = 2 -Yo Y1 =Y0 *m0 X1 = X0 * mo
(1.01),d (1.0001),d (0.1110)8d
= (1.25)10 = (0.9375)10 = (- 0.625)10

i = 1 m1 = 2 - Yo * m0 Y2 = Y0 * m0 * m1 X2 = X0 *m0 *m1
(1.001I)ad (11.0000001),d (I.111oII10),d

1 =2 m2= 2- Y0 *m0 *m1 Y3= Yo *mo *ml *m2 X3= Xo *mo *m1 *m2
(11.0000004M (11.0000000000000001)8d Q = (1.111011101111111),4
= (1.00390625)10 Y3 --> 1 = (- 0.6666..)ío

3. OPTICAL SYMBOLIC SUBSTITUTION RULES

In this section, we present optical symbolic substitution rules needed to carry out the SD arithmetic algorithms. Then we
present a processor architecture for implementing optical The SD arithmetic optically. There are several prop _rties of light that
can be used to encode the digit set {1,0, I}. These include light intensity, polarization, and optical signal phase. Using light
intensity, we need 2 binary pixels to encode 3 digits. A possible encoding scheme represents the digit value 1 by a bright pixel
above a dark one, the digit value I by a reversed pixel pattern, and a zero by two dark pixels as shown in Figure 3.a. Note that
in this scheme 1 and I negate each other.

8.1 Rules for SD Addition

In order to implement the SD addition optically, we derive the symbolic substitution rules from the truth -table specifications
of Table 1. The left- hand -side of the rules are the input combinations and the right -hand -side represents the table entries as
shown in Figure 3.(b -d). On the surface, it seems that we need 33 = 27 rules to implement the SD addition, however, a closer
look at the SD adder design in Figure 1, reveils that the logic of the first stage and of the second stage are very similar.
Furthermore, if we pad the output of the last stage with zero, five of the nine rules become similar to stage 2 and 3. This results
in only 17 rules for optical SD addition. The SD subtraction needs an extra stage to perform digitwise arithmetic negation,
before the SD addition is performed. The negation stage requires two more substitution rules as shown in Figure 4.a, to invert
1 to 1 and vice versa.
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Table 1 Truth -table descriptions of three arithmetic Cell Types
used in the optical adder in Fig.1
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3.2 Rules for SD Multiplication

The SD multiplication is performed as a sequence of SD addition and SD shifts described previously. To produce the partial
product P1 (Eq.8), we need to generate the multiplicative term y;_1 * X, add it to the previous partial product P,_l, and shift
the result one digit position to the right. We introduce symbolic substitution rules shown in Figures 4.b and 4.c to perform the
SD AND operation and the SD right shift.

3.3 Rules for SD Division

The SD division outlined in Figure 2, requires SD addition, SD subtraction, SD multiplication, and SD comparison. The
SD comparison operation can be implemented by subtracting 1 from Yk (see Figure 2) and checking whether the subtraction
result is equal to zero. The checking operation can be done using a photodetector array. The subtraction result (Yk - 1) is sent
to the photodetector which generates an electrical signal to the controller in the presence of zero output. If Yk - 1 = 0, then
the controller stops the iterative process and outputs the last accumulated numerator, Xk as the quotient Q. Otherwise, the
system keeps iterating until Yk - 1 becomes zero.

4. OPTICAL ARITHMETIC ARCHITECTURE
Figure 5 depicts a block diagram of an optical arithmetic processor. It consists of input registers, an input multiplexer, an

SD arithmetic unit, an output router, an optical interconnect, and a control unit. The heart of the processor is the SD arithmetic
unit. This unit is divided into 3 functional modules: the adder /subtractor, the shifter, and the AND modules. Each module
comprises the symbolic substitution rules associated with the SD operation to be performed, i.e. the adder /subtractor module
consists of 19 rules, 17 for SD addition, and 2 for SD negation. The input registers represent temporary storage. The input
multiplexer and the output router monitor the data flow. The control unit is responsible for the execution sequence and control
flow. In what follows, we show how the SD operations can be implemented on such a processor.

SD addition: Adding two SD integers, X, and Y of length n using the processor of Figure 5 is done as follows: we start by
loading the operands X and Y into register A and B respectively. The input multiplexer forms a plane of size 2 x n by putting
the contents of A and B on top of each other, and sends it to the adder module. The adder produces the SD sum S, after 3
successive stages. At each stage, it applies the corresponding symbolic substitution rules shown in Figure 3. The sum S is then
sent to the router that outputs it.

SD multiplication: Multiplying two SD integers is performed as follows: initially the multiplicand X and the multiplier Y
are stored in register A and B respectively, and register C is cleared to zero. The input multiplexer transfers the contents of
A and B to the SD AND module, which in turn generates the multiplicative term yo * X. The router transfers this term to
register B. The contents of register B and C are transferred to the adder, which produces Po + yo * X and sends it to register
C. A right shift of register C produces the first partial product P1 = (P0 + yo * X) x 2 -1 that is put back into C. The whole
process continues until all the multiplier's bits are exhausted, and the product P is generated.

SD division: knowing how SD addition, and multiplication is carried out, it is easy to figure out how the division algorithm
of Figure 2 can be implemented on the processor. Unlike SD addition and SD multiplication, the SD division requires a variable
number of steps depending on the convergence rate. The controller needs to interact with the data at each iteration for the
algorithm to terminate. The algorithm should terminate and output the quotient when the denominator Y1 is equal 1. This
interaction is implemented as a sequence of subtraction and detection operations.

5. OPTICAL IMPLEMENTATION CONSIDERATIONS

We can construct the processor from several modules: input multiplexer, arithmetic unit, output router and optical in-
terconnects. We discuss below the implementation of each module separately, assuming that the formats of signals between
modules(for example, data arrangement, carrier wavelength, etc.) are matched to each other.

The input multiplexer consists of a set of four optical registers, and a selector. Depending on the control signals, the selector
selects one or two registers at a time to be latched to the arithmetic unit. This gives rise to 10 possibilities: transmitting A, B,
C, D, AB, AC, AD, BC, BD, or CD (BA, CA, etc. are considered the same as AB, AC, etc.). A possible implementation
is using combinatorial logic and optical gates to implement the 10 possibilities. A total of 4 control lines can generate 24 = 16
combinations, we use 10 of these to control the combinatorial circuit.

The dynamic selection of a particular functional module (adder, AND, shifter ) can be done in two ways. An obvious way
is to replicate the selected register ( or a combined image) into three copies, one for each functional module and only the active
module will produce an output. Holograhic techniques can be used to replicate the input. This selection method, although fast,
would be very light inefficient due to the replication of the input image at every iteration through the system. An alternative
way, would be the use of an acousto-optic (or an electro-optic) deflector to deflect the input to the desired functional module. A
stack of acousto-optic cells can be driven by electrical control signals whose frequencies are proportional to the desired spatial
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product Pi (Eq.8), we need to generate the multiplicative term yt-_i * X, add it to the previous partial product P,-_i, and shift 
the result one digit position to the right. We introduce symbolic substitution rules shown in Figures 4.b and 4.c to perform the 
SD AND operation and the SD right shift.
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comprises the symbolic substitution rules associated with the SD operation to be performed, i.e. the adder/subtractor module 
consists of 19 rules, 17 for SD addition, and 2 for SD negation. The input registers represent temporary storage. The input 
multiplexer and the output router monitor the data flow. The control unit is responsible for the execution sequence and control 
flow. In what follows, we show how the SD operations can be implemented on such a processor.

SD addition: Adding two SD integers, X, and Y of length n using the processor of Figure 5 is done as follows: we start by 
loading the operands X and Y into register A and B respectively. The input multiplexer forms a plane of size 2 x n by putting 
the contents of A and B on top of each other, and sends it to the adder module. The adder produces the SD sum 5, after 3 
successive stages. At each stage, it applies the corresponding symbolic substitution rules shown in Figure 3. The sum S is then 
sent to the router that outputs it.

SD multiplication: Multiplying two SD integers is performed as follows: initially the multiplicand X and the multiplier Y 
are stored in register A and B respectively, and register C is cleared to zero. The input multiplexer transfers the contents of 
A and B to the SD AND module, which in turn generates the multiplicative term yo * X. The router transfers this term to 
register B. The contents of register B and C are transferred to the adder, which produces PQ + t/o * X and sends it to register 
C. A right shift of register C produces the first partial product PI = (P0 + S/o * X) x 2"1 that is put back into C. The whole 
process continues until all the multiplier's bits are exhausted, and the product Pn is generated.

SD division: knowing how SD addition, and multiplication is carried out, it is easy to figure out how the division algorithm 
of Figure 2 can be implemented on the processor. Unlike SD addition and SD multiplication, the SD division requires a variable 
number of steps depending on the convergence rate. The controller needs to interact with the data at each iteration for the 
algorithm to terminate. The algorithm should terminate and output the quotient when the denominator Yi is equal 1. This 
interaction is implemented as a sequence of subtraction and detection operations.

5. OPTICAL IMPLEMENTATION CONSIDERATIONS

We can construct the processor from several modules: input multiplexer, arithmetic unit, output router and optical in 
terconnects. We discuss below the implementation of each module separately, assuming that the formats of signals between 
modules (for example, data arrangement, carrier wavelength, etc.) are matched to each other.

The input multiplexer consists of a set of four optical registers, and a selector. Depending on the control signals, the selector 
selects one or two registers at a time to be latched to the arithmetic unit. This gives rise to 10 possibilities: transmitting A, B, 
C, D, AB, AC, AD, BC, BD, or CD (BA, CA, etc. are considered the same as AB, AC, etc.). A possible implementation 
is using combinatorial logic and optical gates to implement the 10 possibilities. A total of 4 control lines can generate 24 = 16 
combinations, we use 10 of these to control the combinatorial circuit.

The dynamic selection of a particular functional module (adder, AND, shifter ) can be done in two ways. An obvious way 
is to replicate the selected register ( or a combined image) into three copies, one for each functional module and only the active 
module will produce an output. Holograhic techniques can be used to replicate the input. This selection method, although fast, 
would be very light inefficient due to the replication of the input image at every iteration through the system. An alternative 
way, would be the use of an acousto-optic (or an electro-optic) deflector to deflect the input to the desired functional module. A 
stack of acousto-optic cells can be driven by electrical control signals whose frequencies are proportional to the desired spatial
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position of the desired module. Three angular positions are sufficient for selecting one of the 3 functional modules. This method
is relatively fast, and more economical. Its drawback would be the number of electrical lines required to control the AO cells.

The arithmetic unit is composed of 3 functional modules: SD adder, SD AND, and SD shifter. These modules implement
the substitution rules associated with each operation. Since their implementations are equivalent we only discuss the adder
implementation. Figure 6 shows a schematic diagram of the optical SD adder. The input plane containing the two operands is
replicated as many times as there are active rules; i.e. for the fist stage of the SD addition, we need to replicate the input 9
times and send it to the 9 substitution rules of the first stage ( see section 2). Each active rule produces a copy where all the
occurrences of the left side of that rule have been replaced with the right side. The outputs of active rules are then superimposed
to form the final output. The SD addition requires 3 iterations, a fixed optical interconnects based on holograms or discrete
passive optical devices can be used to feed back the output image between intermediate stages. Note that in case of the SD
AND and shifter modules, we do not need the internal optical feedback. The final result is sent through a static beam steering
element to the router. There are several methods that have been reported to implement the two processing steps of symbolic
substitution technique9",1142,13 Any one of these methods can be used to implement the individual symbolic substitution rules.

A simple optical setup for the router is shown in Figure 7. It consists of two polarizing image splitters (PIM1, PIM2),
two halfwave plates (H1, H2) which are able to switch the polarization of light carrying information when activated by an
electrooptical effect, and a photodetector array that detects the intensity of light and converts it to a proportional electrical
signal. The combination of the on /off states of the polarizing beam splitters implement the 3 states of the router. Each PIM is
preceded by a controllable halfwave plate. These halfwave plates allow the PIM's to direct the output in one direction or the
other depending on their on and off states. For example, when Hl is on, the output is fed back to the input selector through
PIM1; when Hl is off, the output is forwarded to PIM2 which is controlled via H2. When 112 is on, the output is sent to the
detector array for detecting the zero value as discussed before; when 112 is off, the router outputs the data.
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Figure 4 Symbolic substitution rules for SD negation, SD AND
and SD shift operations
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is relatively fast, and more economical. Its drawback would be the number of electrical lines required to control the AO cells.

The arithmetic unit is composed of 3 functional modules: SD adder, SD AND, and SD shifter. These modules implement 
the substitution rules associated with each operation. Since their implementations are equivalent we only discuss the adder 
implementation. Figure 6 shows a schematic diagram of the optical SD adder. The input plane containing the two operands is 
replicated as many times as there are active rules; i.e. for the fist stage of the SD addition, we need to replicate the input 9 
times and send it to the 9 substitution rules of the first stage ( see section 2). Each active rule produces a copy where all the 
occurrences of the left side of that rule have been replaced with the right side. The outputs of active rules are then superimposed 
to form the final output. The SD addition requires 3 iterations, a fixed optical interconnects based on holograms or discrete 
passive optical devices can be used to feed back the output image between intermediate stages. Note that in case of the SD 
AND and shifter modules, we do not need the internal optical feedback. The final result is sent through a static beam steering 
element to the router. There are several methods that have been reported to implement the two processing steps of symbolic 
substitution technique9'10'11 '12 '13. Any one of these methods can be used to implement the individual symbolic substitution rules.

A simple optical setup for the router is shown in Figure 7. It consists of two polarizing image splitters (PIM1, PIM2), 
two halfwave plates (HI, H2) which are able to switch the polarization of light carrying information when activated by an 
electrooptical effect, and a photodetector array that detects the intensity of light and converts it to a proportional electrical 
signal. The combination of the on/off states of the polarizing beam splitters implement the 3 states of the router. Each PIM is 
preceded by a controllable halfwave plate. These halfwave plates allow the PIM's to direct the output in one direction or the 
other depending on their on and off states. For example, when HI is on, the output is fed back to the input selector through 
PIM1; when HI is off, the output is forwarded to PIM2 which is controlled via H2. When H2 is on, the output is sent to the 
detector array for detecting the zero value as discussed before; when H2 is off, the router outputs the data.
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6. PERFORMANCE PREDICTION

We predict the performance of the system by analyzing the SD addition time. Each symbolic substitution rule is implemented
by optical means9'11,12 Consider the design of Figure 5.

Let :

Teelect

Treplieat

Trecognition

Tauóatitute

Treap

Tauperpose

Tfsalute's

Trout

The input selector response time.
Image replication time.

= The pattern recognition time.
The pattern substitution time.
The response time of the optical gate array.
The superposition time.

= The internal feedback time of the adder.
The response time of the router.

Then the optical addition time is a weighted sum of these terms:

Todd = Taelect + Trepiteat + 3(Treplicat + Trecognition + Tresp + Tsuóatitute + tsuperpose) + 2Tfecdóaek + Trout

Eq. (12) can be rewritten as follows:

Todd = Tpropagate + twitch

where

Tpropagate = 4Treplieat + 3Trecognition + +3Tsubetitute + 3teuperpose + 2T feedback + Trout

Tawiteh = Taeleet + 3Treap

(12)

(13)

(14)

(15)

Each component of Tpropagate represents light propagation delay through associated passive optical devices such as lenses,
prisms, beam splitters, etc. Tswitch designates the response time of active optical devices such as the optical gates used to
implement the combinatorial logic of the input selector, and the NOR -gate array needed in symbolic substitutions. The
dominant limitation to the speed is the switching time of the active optical devices, because Tpropagate can be made in the
order of O(10-9) sec, however, state -of -the -art optical switching time is in the order of 0(10-x) sec for a reasonable power
consumption.
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6. PERFORMANCE PREDICTION

We predict the performance of the system by analyzing the SD addition time. Each symbolic substitution rule is implemented 
by optical means9' 11 ' 12 . Consider the design of Figure 5.

Let :
T8ei ect = The input selector response time.
Trepiicat = Image replication time.
^recognition = The pattern recognition time.

— The pattern substitution time.
= The response time of the optical gate array.
= The superposition time.

Tfeedback = The internal feedback time of the adder.
Trout — The response time of the router.

Then the optical addition time is a weighted sum of these terms:

Tadd = Tseieet + Trepucat + 3\Trcplicat 4~ * recognition "\~ J-retp 4~ J- substitute ~H t super pose) ~H 22 feedback H~ -*rout

Eq. (12) can be rewritten as follows:

J-add =: J- propagate T" J- switch

where

te = 4Trtplico.t ~t~ ^Trec0gnition H~ ~^~3T8Ubstitute ~t~ ^superpose ~H 2T/eed6acfc ~H Tr0ut

T8Witch — Tseicct + 3Treap (15)

Each component of Tpropagate represents light propagation delay through associated passive optical devices such as lenses, 
prisms, beam splitters, etc. T8V)itch designates the response time of active optical devices such as the optical gates used to 
implement the combinatorial logic of the input selector, and the NOR-gate array needed in symbolic substitution9 . The 
dominant limitation to the speed is the switching time of the active optical devices, because Tpropagate can be made in the 
order of O(lO~9) sec, however, state-of-the-art optical switching time is in the order of O(10~6) sec for a reasonable power 
consumption.
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7. CONCLUSIONS

We have proposed a new symbolic substitution algorithms for high -speed optical arithmetic operations. These algorithms are
based on a modified signed -digit number representation which offers carry -free addition. We have sketched an optical arithmetic
processor for implementing these algorithms, using state -of -the -art optical and electro-optical devices. The performance of the
optical arithmetic processor is estimated to be O(102)to O(103) times faster than any of the existing electronic processors.
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