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Abstract—Network-on-chips (NoCs) are quickly becoming the
standard communication fabric for multi-core systems. As tech-
nology continues to scale down into the nanometer regime,
device behavior will become increasingly unreliable due to a
combination of aging, soft errors, aggressive transistor design,
and process-voltage-temperature variations. Further, stringent
timing constraints in NoCs are designed so that data can be
pushed faster. The net result is an increase in errors which must
be mitigated by the NoC. Typical techniques for handling faults
are often reactive as they respond to faults after the error has
occurred, making the recovery process inefficient in energy and
time. In this paper, we take a different approach wherein we
propose to use proactive, fault-tolerant schemes to be employed
before the fault affects the system. We propose to utilize machine
learning techniques to train a decision tree which can be used to
predict faults efficiently in the network. Based on the prediction
model, we dynamically mitigate these predicted faults through
error correction codes (ECC) and relaxed timing transmission.
Our results indicate that, on average, we can accurately predict
timing errors 60.6% better than a static single error correction
and double error detection (SECDED) technique resulting in an
average 26.8% reduction in retransmitted packets, a average net
speedup of 3.31x, and an average energy savings of 60.0% over
other designs for real traffic patterns.

I. INTRODUCTION

Today computer processors are made up of tens to hun-
dreds of processing cores such as Intel’s 48-core SCC [1],
Tilera’s 72-core TILE-Gx [2], and Kalray’s 256-core MPPA
[3]. Aggressive transistor scaling has accelerated the rapid
growth in the number of cores that can be integrated on a
single chip. In order for these cores to efficiently communicate,
conventional bus-based networks have been replaced with
network-on-chips (NoCs) [4], [5]. NoCs are scalable, modular
designs that have emerged as the standard communication
fabric in multicore systems. In NoCs, processing cores use
routers connected by segmented links for efficient, scalable
communication without global wire delays. However, the links
between routers are a single point of failure in conventional
NoC designs. Furthermore, as these links are pushed to their
limits in terms of speed and technology, reliability often
becomes a major challenge due to soft, or transient, errors.

The scaling of transistors has enabled the integration of
billions of transistors on a chip. However, as these transistors
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continue to shrink, within-die variations in parameters such
as process, voltage, and temperature are growing. Process
variation impacts the design of different components by in-
troducing slight variations due to the difficulty in controlling
the fabrication process (such as optical proximity effects [6],
[7], [8], dopant density fluctuations [9], etc.). Additionally,
voltage variations can be caused by fluctuations in the power
supply network. Finally, temperature variation can be caused
by varying component utilization and other temporal and
spatial variations. The VARIUS model [10] defines how these
parameter variations can affect the transistors in such a way
that some transistors become slower than others. Besides
parameter variations, the switching of transistors can be further
delayed by wear-out effects such as negative-bias temperature
instability (NBTI) and hot carrier injection (HCI) [11], [12],
[13], [14], [15].

Both parameter variations and wear-out effects can lead to
data arriving slower than the expected time resulting in one
type of soft errors called timing errors [16], [10]. On the
other hand, soft errors that are independent of data arrival
time are called data corruption errors in which single event
upsets or crosstalk cause bits to unexpectedly change at any
point in the data path [17]. Timing errors can occur in any
stage of the NoC that has a timing constraint defined by the
clock period. Typically, clock periods are set such that there is
some slack between the mean data arrival time and the timing
constraint. As power and performance are critical in NoCs, any
increase in network frequency will improve performance [18],
[19]; however this will put additional burden on the timing
constraint. Further, data arrival times may become longer due
to the insertion of global communication links [20], [19] which
reduces hop count (to improve performance) or require less
link repeaters (to save power). Therefore, with aggressive
timing constraints and the occurrence of data corruption errors,
fault mitigation techniques become critical.

Typical techniques for handling faults are often reactive
which implies that they respond to faults after the error has
already occurred. Reactive fault handling techniques are not
the most optimized methods because they are employed after
errors have already affected the performance of the system.
Some reactive techniques route around faults after they have
occurred [21], [22], [23], [24]; some use reconfigurable links



to avoid faults [25], [26], [27]; while others detect all errors
after they occur [28], [29]. On the other hand, proactive
techniques prevent faults before they occur or reduce the
probability of a fault affecting the packet. Proactive fault
tolerant schemes can be more beneficial because they are
employed before the error affects the system. Some proactive
techniques include load balancing routers and links to prevent
device wear-out [11], re-routing in dynamic voltage scaling
systems to avoid low-voltage routers [16], and prediction of
timing-critical instructions [30] or program phases [31].
Machine learning (ML) algorithms have been used in
network/multi-core applications other than fault prediction for
various applications such as network reconfiguration [32],
[33], [34], detection of false memory sharing [35], man-
agement of voltage/frequncy/power network [36], [37], and
prediction of congestion [38], [39]. Different ML models are
implemented in these designs such as decision trees and arti-
ficial neural networks. Regardless of which model is selected,
a data set is an important part of the model. The data set is
typically separated into a training set and a testing set. After
a model is processed on the training set, predictions are made
against the test set to determine the performance of the model.
In this paper, we propose a comprehensive fault-prediction
system in which we (a) create a methodology to obtain the
training/testing sets, (b) train a ML algorithm to predict timing
faults on links, and (c) mitigate soft errors. We focus on soft
errors (timing and data corruption) during the link traversal
stage. Since fault prediction with ML has never before been
implemented for NoCs, we have developed data sets based on
several effects such as device wear-out and process-voltage-
temperature variation. From these data sets, we train a ML
model which can predict timing faults during runtime and
produce several different outcomes each time a flit uses a
link: none of the bits will be in error, few bits will be in
error (1-2 bits), or several bits will be in error (> 2 bits).
The model we use for predicting faults is a decision tree due
to the low overhead during the testing phase which consists
of a few comparisons instead of more complicated operations
such as multiplication as seen with other ML models. Training
for the ML algorithm can be done offline so that it does not
affect the performance of the applications. To ensure correct
execution of applications, most designs encode packets with
a cyclic redundancy check (CRC) to detect errors. Based on
the outcome of our predictor, we will decide whether to use
only the baseline CRC or strengthen CRC. We can strengthen
CRC by applying additional error correcting codes (ECC) or
by applying relaxed timing transmission. The combined impact
of prediction and mitigation is to reduce the retransmission of
packets and save energy when soft errors manifest in the NoC.
The main component of our work is a proactive fault-
tolerant scheme which uniquely predicts timing faults to im-
prove our dynamic soft error mitigation technique. Mispredic-
tions do not affect the correctness of execution; however they
will only cause latency and energy consumption to increase.
Our proactive scheme differs from other proactive techniques
in that we propose a fine-grain prediction and mitigation of

faults on a flit-by-flit basis rather than avoiding areas with high
probability of faults. Unlike previous fault-tolerant designs,
we use ML algorithms to precisely pinpoint faults through a
statistical approach. Our main contributions include:

o Design Data Sets: We combine several effects such as
device wear-out and process-voltage-temperature varia-
tion to determine the probability of two types of timing
errors: a few bits in error and many bits in error. These
probabilities are used to create data sets which are used
to train and test our ML algorithm.

o Fault Prediction: Based on the developed data sets, we
use ML techniques to train decision trees which are used
to predict timing faults on the links. We analyze the
effectiveness of our predictors on testing data sets.

e Dynamic Error Mitigation: Once the faults are pre-
dicted, we dynamically use ECC and relaxed timing trans-
mission to mitigate soft errors as well as show the effects
of our mitigation on network energy and performance.

Before we can train or test the ML algorithm, a suitable data
set is required. A data set is a large list of samples consisting of
a label and a set of features. The data set in this case indicates
the number of errors (label) and the conditions under which
the fault may have occurred (features). Therefore, our data set
will, among other uses, provide a true label in which we can
compare our predicted label. In Section II, we will describe
how to obtain the features and true labels and Section III will
describe the machine learning algorithm used to predict labels.
Once we have our predicted label, Section IV describes the
mitigation techniques we will use to avoid errors if necessary.
Finally, we will evaluate the performance of our predictors as
well as the effects of correct/incorrect predictions on network
performance in Section V.

II. DESIGN OF DATA SETS

To develop a data set, we first must create a fault model
which can realistically produce a probability of error in a
system based on a set of parameters. Using this fault model,
we can then create a data set consisting of a large amount
of samples by varying the model’s input values. We can use
this process to create different data sets for each link in the
NoC. Figure 1 shows the complete methodology involved in
obtaining a data set including the fault model shown in the
dotted box. Subsection II-A explains our fault model which
consists of several realistic temperature, delay, and variation
models. Subsection II-B explains the methodology used to
obtain our data sets.

A. Fault Model

Our fault model, shown in the dotted box of Figure 1,
correlates link utilization to temperature and degree of wear-
out to transistor delays. The corresponding temperature and
delays are then passed to the VARIUS model [10] which
incorporates process and voltage variations to determine the
probability of timing errors.

The first input parameter for our model is link utilization. A
high link utilization implies an increased number of link and
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Fig. 1. Our process to create features and labels using fault models.

router traversals which lead to increased energy consumption
and higher temperature. Therefore, the probability of fault will
increase because gate delays become longer as temperature
increases. Using a NoC fault model [17] which integrates
the HotSpot thermal model [40], we correlate link utilization
to temperature. We assume link utilization that ranges from
0.01 to 0.4 flits/cycle which corresponds to temperature values
ranging between approximately 75-104 degree Celsius. In
subsection II-B, we will explain why this range was selected
and how the link utilization is varied.

The next input parameter of our model is device wear-out.
Devices under long-term stress suffer from effects such as
wear-out and failure due to NBTI and HCI [11]. NBTI and
HCI shift transistor parameters over time and can be modeled
through transistor threshold voltage (V;;) [41]. The shift in
threshold voltage causes increased transistor delays according
to the Alpha-power law [42]:

Via

dyoc ————— 1
0 u(Vag — Vin)® W

where d, is the transition delay, p o< T-'5 (where T is

temperature), and o = 1.3. Therefore, switching based HCI
stress and idle NBTI stress cause wear-out which increases
the delays of transistors and devices become more susceptible
to timing errors.

We consider a permanent fault in the device when AVy; is
greater than 10% [41]. Therefore, we define three threshold
ranges for wear-out which are below 10%: low (AV;;,=0-3.3%),
medium (AV};,=3.3-6.6%), and high (AV,;,=6.6-10%). From
Equation 1 we determine the corresponding transistor delays
for each wear-out value. Assuming V;; = 1V and V0 =0.15V,
the new delays (d) for each wear-out value based on the initial
delays (dy) are:

o Low: d = 1xdy to 1.00592xdy

o Medium: d = 1.00592xdy to 1.01190xdy

o High: d = 1.01190xd, to 1.01796xd)

Based on the wear-out value, a range of delays is calculated
and the average delay is input to the VARIUS model.

The final aspect of our fault model is the process variation
which is integrated as an internal parameter of the VARIUS
model. Process variation has both a systematic component
which is spatially correlated and a random component which
is not spatially correlated. The systematic variation is modeled
by using a function which relates parameter correlation to
distance. The relationship is negative and approximately linear.
For example, two points very close together have transistor
parameters which are highly correlated and two points very
far away have very low correlation. At a distance of ¢,

1 two points are no longer correlated. We use ¢ =1 cm as

experimental results show that gate lengths are correlated up
to approximately half the chip length [6], [10]. Therefore,
depending on link utilization, wear-out, and position on the
chip, we can obtain a probability of error for each link.

B. Data Sets

Next, we must create raw data by (a) inserting various link
utilization and wear-out values, and (b) determining what type
of error occurred. In order to obtain a wide range of input
values, we model an application which ramps up average link
utilization from 0.01 to 0.4 flits/cycle, as shown in Table L.
We stop at 0.4 flits/cycle as most networks saturate before
this point and temperatures approach the bounds of normal
operating temperatures [17]. This model application is run
three separate times for each value of wear-out (low, medium,
and high). The ML model is independent to the order in which
the link utilization or wear-out is varied and only requires a
wide range of values so that all different scenarios can be
handled during runtime. First, to vary the link utilization, we
start at a load of 0.01 flits/cycle and maintain this load for
3,000 cycles. At each cycle, a temperature is selected from
a range of temperatures based on normal bounds for on-chip
temperatures and is modeled as in [17]. For example, at a
load of 0.01 flits/cycle, a temperature would be randomly
selected between 75 and 77 degree Celsius. After 3,000 cycles,
there is a ramp up period of 500 cycles in which the link
utilization increases but the temperature slowly ramps up.
This is to capture the delay in temperature increase after link
utilization has been increased. Table I shows the change in
link utilization and temperature for the model application. This
model application allows our data set to have both a wide range
of input values and a high number of samples.

The output of our fault model, as shown in Figure 1, is the
probability of error (p,) for a single bit line in each of the links.
Our approach is generic and can be applied to many different
scenarios such as various link widths, number of links, and
network topologies. Each link has n data bit lines and there
are a total of L links in the network. We consider a 64-core
concentrated mesh topology with n = 64 and L = 48. Since
all bit lines of a link are relatively close, it is assumed that
Pe 1s the same for all n bit lines within a link. However, each
individual wire of the L total links can have a different p,.



TABLE I
MODEL APPLICATION LINK UTILIZATION AND TEMPERATURE PATTERN.
Load Temperature | Duration
(flits/cycle) (Celsius) (cycles)
0.01 75-77 3,000
0.1 76-80 500
0.1 78-82 3,000
0.2 80-89 500
0.2 87-93 3,000
0.3 90-99 500
0.3 95-101 3,000
0.4 97-101 500
0.4 98-104 3,000

Figure 1 shows two samples in our raw data. For each
cycle #;, a new sample is created which consists of the input
temperature (7;), utilization (U;), and wear-out (W;) as well as
the error type (ET;). To determine the error type, p, is used to
experimentally determine if an error occurred in each bit line.
Since there are n bit lines in a link, this creates a bit error
vector of size n, where the value of each index is O if there
is no error and 1 if there is an error. From this bit vector we
can determine the error type (ET) by counting the number of
1’s in the bit vector: No error (0), Few Errors (1-2), or Many
Errors (>2). A new sample is created for every cycle in each
run of our model application.

From the raw data, we develop our data set which consists of
features and true labels. Since we are interested in preventing
errors before they occur, we must use currently available
information (features) to predict errors in the future (labels).
Therefore, when creating our data sets, we use inputs from
cycle i as our features and outcomes from cycle i+ 1 as our
true labels as shown in Figure 1. We can use the process
described in this section to obtain a data set for each link so
that we can predict errors on each link separately. Predicting
errors separately for each link will improve overall accuracy
of the predictions with a low overhead which will result in
lower energy and better performance.

Finally, we randomly split the samples into training, testing,
and validation data. The training data contains 60% of the
samples whereas the testing and validation data each contain
20% of the remaining samples. Since the probability of error is
typically very small, our data set is quite skewed. For example,
if the probability of error is 1% then on average one sample
out of every 100 will have an error. The skewed data set
will make the decision tree training more difficult. Therefore,
to remedy the skewed data, we use a common technique in
which training samples are randomly replicated such that each
label has an equal amount of samples (50,000 samples/label).
Now each label will be fairly represented and machine learning
algorithms can be used on the data as explained in the next
section.

IIT. MACHINE LEARNING

The complete list of features we consider in our design are:
Temperature (T), Utilization (U), Wear-out (W), and Previous
Error Type (P). The feature values for Temperature are low

ET e {N,F, M}
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Fig. 2. Example of a generic decision tree with outcomes that determine the
predicted error type.

(<84 degree C), medium (>85 degree C and <94 degree C),
and high (>95 degree C). The feature values for Utilization
are low (<0.1 flits/cycle), medium (>0.1 and <0.3 flits/cycle),
and high (>0.3 flits/cycle). The feature values for Wear-out
are low, medium, and high as described in Section II-A. The
feature values for Previous Error Type are “No Errors,” “Few
Errors,” and “Many Errors.”

Each feature can potentially have an effect on probability of
error and we allow the machine learning algorithm to decide
which are the more useful features for predicting errors. The
features can be stored in a small table at each link. The values
of some features, such as Temperature and Wear-out, change
slowly over time; therefore, these features do not need frequent
updating. Link temperature can be estimated by periodically
gathering data from course-grained temperature sensors on
the chip. The work in [11] correlates activity to wear-out.
Therefore, link wear-out can be estimated by keeping a course-
grained counter of link traversals. Link utilization provides
more current information than link wear-out and can be used
in making fine-grained decisions. Finally, Previous Error Type
can easily be updated every time a prediction is made.

In our design, we use decision trees to predict errors
on each of the links. Testing for decision trees consists of
a small number of comparisons. The maximum number of
comparisons equals the number of levels in the tree. In this
paper, we choose the maximum size of the tree to be three
levels as shown in the example tree in Figure 2. This allows
our design to quickly predict a new outcome every cycle.
Each node in the tree represents a feature (X) and the arrows
represent feature values (X;). For example, a feature could be
“Temperature” and a feature value could be “low.” The leaves
of the tree represent the predicted outcome (ET) and can be
any of the following: No Error (N), Few Errors (F), or Many
Errors (M).

As each link is at a different location in the topology and
process variation is spatially correlated, a separate decision
tree is trained for each link. Training the decision tree is done
offline and uses the ID3 algorithm [43]. In the ID3 algorithm,
the criteria for creating nodes are information gains. Features
with the largest information gain are selected as nodes in the
tree. Algorithm 1 details the process of creating the decision
tree based on the set of training data, D (previously described
in Section II-B), and the set of features, F' (Temperature,
Utilization, Wear-out, and Previous Error Type). First, the ID3
algorithm is recursive with the terminating condition being all



Algorithm 1 ID3 algorithm used to build the decision trees
[43].
ID3(Training data D, Feature F):
if all samples in D have the same label:
return a leaf node with that label
let XcF be the feature with the largest information gain
let R be a tree root labeled with feature X
let Dy, D, ..., Dy be the partition produced by splitting D on
feature X
for each D;eDy, Dy, ..., Dy:
let R;=ID3(D;, F-{X})
add R; as a new branch of R
return R

examples in D have the same label. Next, the feature with
the largest information gain is called X and R is the tree root
labeled with feature X. Then, the initial data set D is partitioned
into k separate data sets (D1,D»,...,D;) each corresponding to
a value of feature X. Finally, for each data set D;, the ID3
algorithm is recursively called passing it the partitioned data
set D; and a set of features excluding feature X (F — {X}).
The tree root which is returned by the recursive call (R;) is
added as a new branch to the original tree root R. After the
ID3 algorithm is finished, a complete tree is built with nodes
containing features that maximize the information gain on the
training set. A modification we add to the ID3 algorithm is that
we modify the terminating condition to limit the size of the
tree to three levels so that the number of comparisons during
testing is reduced to only three, resulting in small energy and
latency.

Now we will detail the steps in building a decision tree
in our design using an example training data set. Figure 3(a)
shows the fully built decision tree and Figure 3(b) shows the
steps in building this decision tree. The table titled D in Figure
3(b) is the example data set. There are nine samples in this
data set and each sample has feature values. Some feature
values are omitted by a dash (-) for illustrative purposes of
the example. Also, each sample has a true label for the error
type (ET).

Following the steps in Algorithm 1, it is not true that
all samples in D have the same label so we can move on.
Next, for this example, we assume Temperature has the largest
information gain; Therefore, we let X = Temperature in Step
1 of Figure 3(b). Temperature is now the root of the decision
tree. Next, in Step 2a, D is partitioned by splitting it on the
feature values of Temperature (Low, Medium, and High). After
the splitting, there are now three tables showing each data set,
Dy, D», and D3. Also, since Temperature was already used,
we can remove it from the feature list in Step 2b.

Finally, Step 3 is to recursively call the ID3 algorithm
for each newly partitioned data set. For example, the ID3
algorithm will be used on data set D; to find the node at
the first branch of the tree. Since all of the samples in this
partitioned data set have the label N, the label is returned and
becomes a node in the tree. The ID3 algorithm will also be
called on D, to find the node at the second branch in the
tree. Since all of the samples do not have the same label and
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Fig. 3. (a) Example decision tree and (b) steps to build the tree. Step 1:
Feature with the highest information gain becomes the root of the tree. Step
2a: Data set is partitioned on the feature values of the root. Step 2b: Root
feature is removed from the feature list. Step 3: Recursively call ID3 on each
newly partitioned data set. Repeat all steps until the tree is completed.

we assume Previous Error has the largest information gain,
Previous Error becomes the next node in the tree. Steps 2a-
3 are repeated: D, is split, the feature set is reduced further,
and ID3 is called again which results in the labels N, F, and
M. Finally, ID3 is called on D3 which is the third branch
corresponding to a high temperature. The steps are repeated
until all samples have the same label or there are three levels
in the tree. After all nodes in the tree have features or labels,
the result is the completed tree in Figure 3(a).

IV. ERROR MITIGATION AND ROUTER
MICROARCHITECTURE

Once the errors can be predicted, the next step is mitigation
of the errors. We add cyclic redundancy check (CRC) encoder
blocks at the router ports coming from the cores and CRC
decoders at the router ports going to the cores. The top of
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techniques.

Figure 4 shows an example of a packet transmission using
CRC. When a packet is injected into the network, it is always
encoded with CRC. Before the packet is ejected out of the
network it is always decoded and checked for errors. If errors
are detected at a packet’s destination then the packet must be
retransmitted from the source.

We use the IEEE standard CRC-32 [44]. CRC-32 is a
commonly used error detection code capable of detecting all
one to three bit errors, odd bit errors and a fraction of burst
errors up to the size of the 32-bit check code. Each 32-bit
check code is produced and appended to the tail of each packet
as it is injected into the network, extending the packet size
by 32-bits to a total of 256-bits. When an error is detected
anywhere in the packet, we know the error exists but correction
of the error is not possible with CRC decoding. Mitigation of
the error is concluded with successful packet retransmission.
CRC offers the most coverage in our network but has the
highest overhead. Hence, CRC is reserved only for use at
the source and destination routers. Since the source can often
be several hops away from the destination, we will reduce
the latency and energy overheads of retransmission by error
mitigation at the intermediate hops between the source and
destination.

At the intermediate hops, we use two forms of error mitiga-
tion: (a) hamming codes which have single error correction and
double error detection (SECDED) and (b) relaxed transmission
(RT). An example of packet transmission using SECDED is
shown in the middle of Figure 4. We encode at the output port
of each router with SECDED, then the flit traverses the link
which is susceptible to faults, and finally we decode at the
input port of the next router. If errors are detected and cannot
be corrected then a retransmission must occur. However, only
one flit must be retransmitted and the flit is only retransmitted
one hop as opposed to being retransmitted from the source. If
an error can be corrected then a retransmission can be avoided.
For error correction, SECDED is implemented using a (72,64)
hamming code with a maximum error correction tolerance of
1-bit per flit. All single bit errors in the 72-bit encoded flit will

TABLE II
LATENCY OVERHEADS OF EACH MITIGATION TECHNIQUE GIVEN THE
NUMBER OF TIMING ERRORS.

CRC SECDED RT
No Errors No Overhead No Overhead 2 Cycle Delay
True Few Errors | Full Retransmission No Overhead 2 Cycle Delay
Outcome &
1 Hop Retrans.
Many Errors | Full Retransmission | Full Retransmission | 2 Cycle Delay

be corrected upon injection into the router. Overall, SECDED
always has an energy overhead but only a latency overhead if
a retransmit is required.

The second form of error mitigation is RT and is shown at
the bottom of Figure 4. RT waits an additional cycle before
reading the data at the input port; essentially, giving the flit
twice as much time to traverse the link. This will relax the
timing constraint on the transmission of the flit and reduce
the probability of a timing error to very close to zero. RT can
be done by, first, stalling the flit and sending a signal to the
input demultiplexer of the downstream router. The downstream
router is now notified to wait two cycles before reading data.
After the router is notified, the flit begins the two cycle link
traversal. Compared to a regular flit transmission, RT has no
extra energy overhead but has an extra latency overhead of
two cycles: one cycle to signal the downstream router and
one additional cycle for data transmission. Overall, we can
offer error mitigation on a hop-by-hop basis using SECDED
or RT and we can offer greater error mitigation from source
to destination using CRC.

Each error mitigation technique may have latency and
energy overheads depending on different outcomes. Table II
summarizes the latency overheads of each mitigation technique
based on how many errors are there in the data, i.e. the true
outcome. For CRC, if there are any errors, then the full packet
will be fully retransmitted from the source. For SECDED, if
there are no errors, then there will be no additional latency
overhead. However, if there are a few errors, then there will
be two possibilities: (1) a single error will be corrected and
there will be no latency penalty, or (2) two errors will be
detected in which only one flit will be retransmitted for one
hop. If there are many errors, then it will only be detected
by the CRC at the destination and a full retransmission will
be required. For RT, there will be a two cycle delay for any
number of timing errors.

Table III summarizes the energy overheads of each mitiga-
tion technique. For CRC, there will always be the energy to en-
code/decode as well as the possibility for additional energy due
to a full retransmit. When SECDED is employed, there will
be the SECDED encoder/decoder energy. Additionally, there
can be an energy overhead from either a full retransmission
or a one hop, one flit retransmission. The energy dissipation
for a one hop retransmission will be much lesser than the
energy dissipation for a full retransmission. Lastly, RT has no
additional energy overheads for timing errors.

As each form of error mitigation has either a latency or
energy overhead, we will reduce these additional overheads



TABLE III
ENERGY OVERHEADS OF EACH MITIGATION TECHNIQUE GIVEN THE
NUMBER OF TIMING ERRORS.

CRC SECDED RT
No Errors CRC SECDED No Overhead
Few Errors CRC + Full SECDED No Overhead

True
Outcome

and/or
1 Hop Retransmission

SECDED + Full
Retransmission

Retransmission

CRC + Full
Retransmission

Many Errors No Overhead

Router
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Predictor, d
Pred. ET
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v
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Fig. 5. Router microarchitecture showing the feature table, predictors,

encoders, decoders, and CRC blocks.

by using prediction to dynamically enable and disable the
SECDED and RT. Figure 5 shows the router microarchitecture
in our network including the predictor blocks. There are also
virtual channels (VCs) to buffer flits at the input ports and
avoid deadlocks. We use a crossbar to switch the flits from
the input ports to the output ports as well as output buffers to
store packets at the output ports when needed. The router is a
typical credit-based, pipelined router with route computation
(RC), virtual channel allocation (VC), and switch allocation
(SA) blocks. Routers can be connected to other routers via
links in any topology. The CRC blocks are shown at the cores
as we employ this error mitigation only at the source and
destination. The SECDED encoders are at the output ports
and the SECDED decoders are at the input ports as this error
mitigation is used on a hop-by-hop basis.

Based on the output of the prediction algorithm, the network
can choose when to enable SECDED, when to enable RT,
or when to disable both. The features previously explained
are stored in the features table shown in Figure 5. For each
output port, the features table has an entry which stores the
feature values for temperature (T), utilization (U), wear-out
(W), and previous error type (P). Additionally, at each output
port there is a predictor block (predictory to predictory,)
which implements each link’s unique decision tree using low
overhead comparisons. The predictor takes a table entry as
input and then outputs the predicted error type as well as an

enable signal. Based on the predicted error type (ET) three
different actions can occur: 1) If ET="“No Errors” then no
action is taken, 2) If ET="Few Errors” then the flit is encoded
with SECDED before the link is used, and 3) If ET="Many
Errors” then the flit is sent using RT. Therefore, if SECDED
is used then the predictor enables the encoder and forwards
the predicted ET to the downstream router so that it knows to
decode the flit when it arrives. Similarly with RT, the predictor
forwards the predicted ET to the downstream router so that the
input port knows to wait an additional cycle before reading the
data.

Figure 6 shows an example of packet transmission with and
without prediction. With both prediction and no prediction, we
assume CRC is always enabled in order to detect errors at the
destination. Without prediction, SECDED and RT cannot be
dynamically enabled and disabled in an intelligent manner.
Therefore, in this particular example we assume SECDED is
always enabled and RT is always disabled. With no predic-
tion, energy is dissipated at every hop due to the SECDED
encoders/decoders. If no errors occurred, then this energy
dissipation was unnecessary. With prediction, when our design
correctly predicts that no errors will occur, then the SECDED
encoders/decoders can be disabled saving power. When a few
errors are correctly predicted, the SECDED encoders/decoders
are enabled and a few bit errors can be mitigated in the same
manner as if SECDED is always enabled. Lastly, with no
prediction, if many errors occur on the link, it will not be
detected until the packet reaches the destination. However,
with prediction, if many errors can correctly be predicted then
RT can be employed possibly avoiding a full retransmission.

However, with any prediction technique there is also the
possibility of misprediction. If our design incorrectly predicted
that no errors occur then this misprediction will lead to a
full retransmission. If our predictor incorrectly predicts that
a few errors will occur then the SECDED will unnecessarily
be activated, wasting energy. Lastly, a misprediction of many
errors will lead to an unnecessary two cycle delay. Therefore,
it is important that our predictor performs well so that the
advantages of correctly predicting outweigh the misprediction
penalties as evaluated in the next section.

V. EVALUATION

In this section, we first evaluate the overhead of the error
mitigation and the predictor module. The energy and area of
the links and other router components were evaluated with the
DSENT NoC modeling tool [45] using a 45 nm technology
library, a supply voltage of 1.0 V, and a frequency of 2 GHz.
To evaluate our custom mitigation and predictor modules, the
Synopsys Design Compiler with the same 45 nm technology
library, 1.0 V supply voltage, and 2 GHz frequency was used.

Next, we discuss the results of the trained decision trees.
Training is done offline; thus, there is no runtime latency for
training. For each link in the network, we train a separate
decision tree using separate training data sets. The decision
trees are trained using the ID3 algorithm and each training
data set initially has 50,000 samples. Since the data is skewed,
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samples are replicated, as explained in Section II-B, to bring
the total size of the training data to 150,000 samples. Then we
test each decision tree using separate testing data sets for each
link. Each testing data set has 10,200 samples. We compare our
prediction design which labels samples using decision trees
(DTs) to a technique which randomly assigns labels (Rand)
and a technique which always applies SECDED.

Finally, we evaluate our design on a 64-core, concentrated
mesh (CMesh) [46] network as shown in Figure 7. The net-
work parameters are also shown in Figure 7. We use a packet
size of 4 flits and each flit is 64 bits. We use ACK/NACK
signals at the destination to signal successful/unsuccessful
packet transmission and ACKs/NACKs per hop to signal
successful/unsuccessful flit transmission [47]. Retransmission
buffers are used at the routers which store the data until an
ACK is received. If a NACK is received then the data is
retransmitted. We assume that the ACKs/NACKs use control
lines which are separate from the data lines. We inject timing
errors on the data links every time a flit is transmitted.
Additionally, to account for all other errors which are not
timing related, we also inject data corruption faults which
cause bits of data to be unexpectedly changed. Therefore, data
corruption faults, unlike timing faults, are not due to late data
arrival. We inject errors individually on each data link with a
certain probability, based on our model described in Section
II-A, which incorporates link utilization, temperature, process
variation, and wear-out. For fair evaluation, the training and
testing data follow the same probability distribution and the
test data is independent of the training data per standards for
all machine learning algorithms.

We execute real traffic traces on our network using work-
loads from the Splash-2, PARSEC, and SPEC CPU2006
benchmark suites. Traces were collected using the full
execution-driven simulator SIMICS from Wind River [48]
with the memory package GEMS [49]. The traffic collected is
bimodal traffic with a mix of short (1 flit) packets and long
(5 flit) packets. We assume a 2 cycle delay to access the L1
cache, a 4 cycle delay for the L2 cache, and a 160 cycle
delay to access main memory. For each simulation, we warm

Cores 64
Concentration 4 cores
Routers 16
Data Link Width 64 bits

Number of Links 48
Packet Size 4 flits
Flit Size 64 bits
VCs 4 per port
VC Size 4 flits

Fig. 7. Concentrated mesh with network parameters.

TABLE IV
OVERHEAD OF ROUTER COMPONENTS.
Energy Area Timing
®) (um?) (ns)
64b Link 10.333 135.2 0.515
Buffer (1 flit) 1.154 1,017.3 0.07
Switch 1.572/Mlit | 15,402 (8x8) 0.05

up the simulator until a steady state is reached then we fix
the number of packets sent (not including retransmissions) to
32,000 packets.

A. Overhead of Error Mitigation and Predictors

The overhead of the network components are shown in Table
IV. The energy of a 64 bit, 4 mm long link was found to
be approximately 10.333 pJ. In order to simulate a design
with aggressive clocking, the delay of the link (0.515 ns) is
designed to be 3% higher than the clock period (0.50 ns).
Since the clock period is less than the average arrival time of
the data, the link is susceptible to timing errors which we can
mitigate with SECDED and RT.

Table V shows the energy, area, and timing overheads of
the CRC, SECDED, and predictor modules. The energy for the
CRC encoder and decoder are both 0.620 pJ. CRC uses several
shift registers to obtain a check code. The value of this check
code determines if there are errors or not. The process is the
same at both the encoder and decoder; therefore, the energy,
area, and timing are the same for both modules. The timing of
the encoder/decoder is 1.09 ns. Since our clock period is 0.50
ns, encoding will take three cycles and decoding will also take
three cycles. Overall the CRC accounts for approximately 18%
of the total router energy and 14% of the total router area. The
energy, area, and latency of CRC is the largest of our error
mitigation techniques which is the reason why it is reserved
only for source and destination routers.

For SECDED, the encoder energy is approximately 0.072
pJ which is approximately 2.6% of the total router energy. The
decoder energy is the same if there are no errors, but higher
if errors are corrected or detected. Since our SECDED uses a
(72,64) hamming code, there is also an energy overhead for
transmitting the additional 8 parity bits across the network
links. The energy for parity bit transmission is approximately
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TABLE V
ERROR MITIGATION AND PREDICTOR OVERHEADS.
Module Energy Area Timing

() (um?) (ns)
CRC Encoder 0.620 | 2,680.0 1.09
CRC Decoder 0.620 | 2,680.0 1.09
CRC Total 1.240 | 5,360.0 2.18
SECDED Encoder | 0.072 285.6 0.24
SECDED Decoder | 0.227 930.5 0.38

SECDED Parity 1.292 - -
SECDED Total 1.591 1,216.1 0.62
Predictor Total 0.002 29.8 0.17

1.292 pJ which is 11% of the total link energy. The latency
for SECDED encoding is only 0.24 ns and can be combined
with the output buffering router stage. Using the Synopsys
Design Compiler, the latency of the buffer stage is only 0.07
ns. Therefore, buffering and SECDED encoding will take a
total of 0.31 ns which is well below our clock period of 0.50
ns. Similarly, SECDED decoding can be combined with the
buffer write stage at the input port.

Finally, our predictor module consumes a very low energy
of 0.002 pJ and occupies only 29.8 um? of area. The predictor
module implements the decision tree which uses, at most, three
comparisons for each level in the tree; therefore, the overhead
is very small. The latency of the predictor module is only 0.17
ns which is under the clock period, so predictions can easily
be made every cycle.

B. Trained Decision Trees

Using the training data sets and the ID3 algorithm we chose
to train a separate decision tree for each link in the topology
due to the spatial correlation of process variation. While we
chose CMesh, our approach is generic and can be applied
to any topology. Figure 8 shows the resulting decision trees
for a couple different links. Temperature is the root node for
each tree in Figure 8 and was found to be the root node for
every link in the topology. As temperature has such a strong
effect on probability of timing errors, this is expected. At low
temperatures, the probability of error is low. Therefore, 45 of
the 48 trees (93.8%) have the N label as the leaf of the low
temperature branch, the other trees have at least one F label
in the subtree of the low temperature branch. No tree has a M
label anywhere in the low temperature branch. At the second
level, 46 of the decision trees had the Wear-out feature or a

label at each node. The remaining two trees had a combination
of Utilization and Wear-out at the second level. The Wear-out
feature was so common because it is another strong predictor
of timing errors. At the third level of the trees, the nodes vary
mostly between the Utilization and Previous Error features
with only two trees using the Wear-out feature. The Previous
Error feature, being a weaker predictor at the bottom of the
tree, has a high entropy, or uncertainty, which results in leaves
that have less correlation to the feature values. However, the
inclusion of multiple features in the decision trees results in
more accurate predictions.

C. Performance of Decision Trees on Timing Errors

Next, we will examine the confusion matrix for our decision
trees. A confusion matrix is one way to show the performance
of a prediction algorithm. Each column in the matrix is a
predicted label and each row is the true label. The confusion
matrix shows how often a predictor confuses labels. The
confusion matrix for the +x link of router 0 is shown in
Table VI. The diagonals of this matrix show the number of
test samples that were correctly labeled. For example, 7,508
out of the 10,200 test samples were correctly labeled N. The
non-diagonal elements of the matrix show the number of test
samples that were mislabeled. For example, 2,552 samples
were labeled F when the true label was actually N.

The average confusion matrix for all the decision trees is
shown in Table VII. When the sample is correctly labeled,
there are no additional overheads. However, mislabeled sam-
ples will cause either additional latency or energy overheads.
Table II and Table III from Section IV detail the overheads
for each possibility in the confusion matrix. For example, if a
sample is labeled F when the true label was actually N then the
flit will be encoded/decoded with SECDED. However, since
there were actually no errors, there will be a slight energy
overhead due to the unnecessary SECDED encoding/decoding
but no latency overhead. The exact energy of SECDED and
CRC encoding and decoding was shown in Table V and the
effects of the mislabeled samples on network performance will
be shown in Section V-D.

From the average confusion matrix, we calculate the ac-
curacy of our decision trees (DTs) compared to Rand and
SECDED. The results are shown in the first column of Table
VIII. The DTs correctly predict the true label in approximately
70.6% of the samples which improves over a random labeling



TABLE VI
CONFUSION MATRIX FOR +X LINK OF ROUTER 0.
Predicted
N F M
N 7,508 2,552 0
True F 22 118 0
M 0 0 0
TABLE VII
CONFUSION MATRIX AVERAGED OVER ALL DECISION TREES.
Predicted
N F M
N 5981.8 | 1,902.8 483.1
True F 121.1 565.0 334.1
M 0.8 159.8 651.5

and SECDED which always assumes that a few errors will
occur. Since the probability of error is low, many samples will
have no errors which is called a skewed data set. Therefore,
a common and better metric to consider is called the F-score.
The F-score is a different measure of accuracy used for skewed
data and is an average of the precision and recall which are
measures of relevance. Table VIII shows the average F-score
for each labeling technique. The DTs have the highest F-score
at 61.0%. On average, DTs have a F-score 41.3% higher than
Rand and SECDED.

Some mispredictions cause a small one cycle delay or a
small encoding overhead. However, there are three cases in
the confusion matrix in which mislabeling in our design will
cause a full retransmission. These cases are in the lower left
triangular part of the confusion matrix: 1) Predicted N/True F,
2) Predicted N/True M, and 3) Predicted F/True M. As these
mispredictions are most costly, the total number of these three
cases should be minimized. The third column of Table VIII
shows the percentage of samples which will require retrans-
missions due to a timing error. In our design, on average, only
2.8% of the samples cause a full retransmission compared to
8.6% and 8.0% for Rand and SECDED, respectively.

D. Network Performance

After evaluating the performance of the decision trees on
timing errors, we now introduce data corruption errors and
evaluate the effect of all soft errors on network performance.
First, in Figure 9, we show the percent of retransmitted
packets. The percent of retransmitted packets for each design
is relatively high due to the aggressive clocking, the multi-
hop communication, and the high operating temperatures we
assume. However, DT's can reduce the number of transmissions
by 26.8% on average over the other designs. SECDED can
prevent retransmission due to a few timing errors or a few data
corruption errors; however, with many errors, a full retrans-
mission is still required. The Rand labeling incurs the most
retransmissions due to the high number of mispredictions.

In Figure 10, we evaluate application speedup relative to
Rand which is equal to the ratio of execution time of a
given design to the execution time of Rand. Averaged over
all applications, DTs execute faster than other designs with a
speedup of approximately 3.31x. The ability of DTs to accu-
rately predict timing errors reduces latency delays such as one-

TABLE VIII
ACCURACY, F-SCORE, AND PER-HOP RETRANSMIT PERCENT DUE TO
TIMING ERRORS FOR OUR DECISION TREES (DTS) COMPARED TO OTHER
LABELING TECHNIQUES.

DT

70.6% 61.0% 2.8%
33.3% 33.3% 8.6%
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Fig. 9. Percent of packets that require full retransmission.

hop retransmissions, full retransmissions, and unnecessary RT
activations. Also, the ability of SECDED to detect and correct
data corruption errors reduces transmissions; thereby, reducing
the execution times. The static SECDED design always applies
SECDED so it can avoid some one-hop flit retransmission;
however, many errors will cause a full retransmission. The
Rand design has a long execution time on average due to the
large number of mispredictions.

Finally, we examine the component breakdown for the
energy per flit in Figure 11. Due to space constraints, we
only show nine applications. During simulation, we calculate
the total energy consumption for all the flits then we divide
by the number of error-free flits which is fixed to 128,000
flits, or 32,000 packets, for all simulations. Therefore, designs
with a higher number of retransmissions will require more
energy to successfully transmit 128,000 error-free flits and will
have higher energy per flit values. Our DT design reduces
energy per flit by approximately 60.0% on average over all
other designs. The main reason for this reduction is the fewer
number of one-hop and full retransmissions due to correct
predictions. Additionally, DTs can reduce the SECDED energy
over SECDED and Rand when predictions are correct.

E. Other Failure Rates

Our design targets aggressive timing constraints in which
the mean data arrival time is 3% longer than the clocking
period. In this section, we will evaluate the effects of more
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Fig. 10. Application speedup relative to Rand.
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TABLE IX
ACCURACY, FSCORE, AND PERCENT RETRANSMITS FOR DESIGNS WITH
MEAN DATA ARRIVAL TIMES 1% LONGER (+1%) AND 1% SHORTER (-1%)
THAN THE CLOCKING PERIOD.

DT 71.1% 51.8% 1.0% DT 77.7% 461% 0.1%
Rand 33.4% 333% 2.9% Rand 33.4% 336% 0.5%
SECDED 5.6% 35% 1.5% SECDED 1.5% 1.0% 0.0%

relaxed timing constraints which will effectively lower the fail
rates of the links. Table IX shows the accuracy and retransmit
percentage of a mean arrival time 1% longer than the clocking
period (+1%) and the accuracy of a mean arrival time 1%
shorter than the clocking period (-1%). Our DTs have been
trained and tested with the new mean arrival times. Due to
the lower failure rates, DTs have less of an advantage as the
timing constraint becomes more relaxed. However, as shown
in Figure 12, DTs can still reduce energy consumption due to
dynamic SECDED enabling and less retransmissions.

VI. CONCLUSIONS

With NoCs becoming the communication standard for
multi-core systems, the reliability of network components
becomes an important concern. Network links, in particular,
are susceptible to timing errors due to stringent timing con-
straints, parameter variation, and device wear-out. Proactive

mSECDED
oLink mCrossbar
100 mBuffer

120 mCRC

40
20

Energy per Flit (pJ)
(=2
o

o
DT

DT
SECDED

DT
SECDED

DT
SECDED

DT
SECDED

DT
SECDED

DT
SECDED

DT
SECDED

DT
SECDED

SECDED

=a
ow
=
=
i
[z

Rand
Rand
Rand
Rand
M-always
Rand
Rand
Rand
Rand
Rand

Barnes Ocean Water bzip  gcc_base hmmer Facesim Fluid Swaptions Average

(a) +1% Mean Arrival Time
ECRC =SECDED

BLink B Crossbar

Barnes Ocean Water bzip gcc_base hmmer Facesim Fluid Swaptions Average

(b) -1% Mean Arrival Time
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a -1% mean arrival time relative to the clock period.

fault-tolerant techniques can prevent errors before they occur
or reduce the probability of faults. In this paper, we develop a
new approach to proactive fault-tolerance which uses machine
learning (ML) algorithms to predict and mitigate errors.

We provide a comprehensive fault-prediction system in
which we (a) create a methodology to obtain realistic data
sets, (b) train a ML algorithm to predict timing faults on links,
and (c) mitigate for soft errors. We develop a fault model,
which accounts for parameter variation and device wear-out,
to create training/testing data sets for the ML algorithm.
Using the training data set and the ID3 algorithm, we create
decision trees which can be used to accurately predict the
number of errors. Finally, we dynamically mitigate the errors
using a combination of error correction codes (ECC) and a
relaxed transmission. Our results show that the energy (0.002
pJ), area (29.8 um?), and latency (0.17 ns) overheads of the
predictor implementation are minimal. Decision trees are able
to accurately predict timing errors 60.6% better than a static
SECDED technique. Our network results indicate a 26.8%
reduction in packet retransmissions, a 3.31x speedup, and an
energy savings of 60.0% on average over other designs.
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