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Abstract—Network-on-chips (NoCs) are quickly becoming the
standard communication fabric for multi-core systems. As tech-
nology continues to scale down into the nanometer regime,
device behavior will become increasingly unreliable due to a
combination of aging, soft errors, aggressive transistor design,
and process-voltage-temperature variations. Further, stringent
timing constraints in NoCs are designed so that data can be
pushed faster. The net result is an increase in errors which must
be mitigated by the NoC. Typical techniques for handling faults
are often reactive as they respond to faults after the error has
occurred, making the recovery process inefficient in energy and
time. In this paper, we take a different approach wherein we
propose to use proactive, fault-tolerant schemes to be employed
before the fault affects the system. We propose to utilize machine
learning techniques to train a decision tree which can be used to
predict faults efficiently in the network. Based on the prediction
model, we dynamically mitigate these predicted faults through
error correction codes (ECC) and relaxed timing transmission.
Our results indicate that, on average, we can accurately predict
timing errors 60.6% better than a static single error correction
and double error detection (SECDED) technique resulting in an
average 26.8% reduction in retransmitted packets, a average net
speedup of 3.31×, and an average energy savings of 60.0% over
other designs for real traffic patterns.

I. INTRODUCTION

Today computer processors are made up of tens to hun-

dreds of processing cores such as Intel’s 48-core SCC [1],

Tilera’s 72-core TILE-Gx [2], and Kalray’s 256-core MPPA

[3]. Aggressive transistor scaling has accelerated the rapid

growth in the number of cores that can be integrated on a

single chip. In order for these cores to efficiently communicate,

conventional bus-based networks have been replaced with

network-on-chips (NoCs) [4], [5]. NoCs are scalable, modular

designs that have emerged as the standard communication

fabric in multicore systems. In NoCs, processing cores use

routers connected by segmented links for efficient, scalable

communication without global wire delays. However, the links

between routers are a single point of failure in conventional

NoC designs. Furthermore, as these links are pushed to their

limits in terms of speed and technology, reliability often

becomes a major challenge due to soft, or transient, errors.

The scaling of transistors has enabled the integration of

billions of transistors on a chip. However, as these transistors

continue to shrink, within-die variations in parameters such

as process, voltage, and temperature are growing. Process

variation impacts the design of different components by in-

troducing slight variations due to the difficulty in controlling

the fabrication process (such as optical proximity effects [6],

[7], [8], dopant density fluctuations [9], etc.). Additionally,

voltage variations can be caused by fluctuations in the power

supply network. Finally, temperature variation can be caused

by varying component utilization and other temporal and

spatial variations. The VARIUS model [10] defines how these

parameter variations can affect the transistors in such a way

that some transistors become slower than others. Besides

parameter variations, the switching of transistors can be further

delayed by wear-out effects such as negative-bias temperature

instability (NBTI) and hot carrier injection (HCI) [11], [12],

[13], [14], [15].

Both parameter variations and wear-out effects can lead to

data arriving slower than the expected time resulting in one

type of soft errors called timing errors [16], [10]. On the

other hand, soft errors that are independent of data arrival

time are called data corruption errors in which single event

upsets or crosstalk cause bits to unexpectedly change at any

point in the data path [17]. Timing errors can occur in any

stage of the NoC that has a timing constraint defined by the

clock period. Typically, clock periods are set such that there is

some slack between the mean data arrival time and the timing

constraint. As power and performance are critical in NoCs, any

increase in network frequency will improve performance [18],

[19]; however this will put additional burden on the timing

constraint. Further, data arrival times may become longer due

to the insertion of global communication links [20], [19] which

reduces hop count (to improve performance) or require less

link repeaters (to save power). Therefore, with aggressive

timing constraints and the occurrence of data corruption errors,

fault mitigation techniques become critical.

Typical techniques for handling faults are often reactive

which implies that they respond to faults after the error has

already occurred. Reactive fault handling techniques are not

the most optimized methods because they are employed after

errors have already affected the performance of the system.

Some reactive techniques route around faults after they have

occurred [21], [22], [23], [24]; some use reconfigurable links978-1-5090-3508-3/16/$31.00 c© 2016 IEEE



to avoid faults [25], [26], [27]; while others detect all errors

after they occur [28], [29]. On the other hand, proactive

techniques prevent faults before they occur or reduce the

probability of a fault affecting the packet. Proactive fault

tolerant schemes can be more beneficial because they are

employed before the error affects the system. Some proactive

techniques include load balancing routers and links to prevent

device wear-out [11], re-routing in dynamic voltage scaling

systems to avoid low-voltage routers [16], and prediction of

timing-critical instructions [30] or program phases [31].

Machine learning (ML) algorithms have been used in

network/multi-core applications other than fault prediction for

various applications such as network reconfiguration [32],

[33], [34], detection of false memory sharing [35], man-

agement of voltage/frequncy/power network [36], [37], and

prediction of congestion [38], [39]. Different ML models are

implemented in these designs such as decision trees and arti-

ficial neural networks. Regardless of which model is selected,

a data set is an important part of the model. The data set is

typically separated into a training set and a testing set. After

a model is processed on the training set, predictions are made

against the test set to determine the performance of the model.

In this paper, we propose a comprehensive fault-prediction

system in which we (a) create a methodology to obtain the

training/testing sets, (b) train a ML algorithm to predict timing

faults on links, and (c) mitigate soft errors. We focus on soft

errors (timing and data corruption) during the link traversal

stage. Since fault prediction with ML has never before been

implemented for NoCs, we have developed data sets based on

several effects such as device wear-out and process-voltage-

temperature variation. From these data sets, we train a ML

model which can predict timing faults during runtime and

produce several different outcomes each time a flit uses a

link: none of the bits will be in error, few bits will be in

error (1-2 bits), or several bits will be in error (> 2 bits).

The model we use for predicting faults is a decision tree due

to the low overhead during the testing phase which consists

of a few comparisons instead of more complicated operations

such as multiplication as seen with other ML models. Training

for the ML algorithm can be done offline so that it does not

affect the performance of the applications. To ensure correct

execution of applications, most designs encode packets with

a cyclic redundancy check (CRC) to detect errors. Based on

the outcome of our predictor, we will decide whether to use

only the baseline CRC or strengthen CRC. We can strengthen

CRC by applying additional error correcting codes (ECC) or

by applying relaxed timing transmission. The combined impact

of prediction and mitigation is to reduce the retransmission of

packets and save energy when soft errors manifest in the NoC.

The main component of our work is a proactive fault-

tolerant scheme which uniquely predicts timing faults to im-

prove our dynamic soft error mitigation technique. Mispredic-

tions do not affect the correctness of execution; however they

will only cause latency and energy consumption to increase.

Our proactive scheme differs from other proactive techniques

in that we propose a fine-grain prediction and mitigation of

faults on a flit-by-flit basis rather than avoiding areas with high

probability of faults. Unlike previous fault-tolerant designs,

we use ML algorithms to precisely pinpoint faults through a

statistical approach. Our main contributions include:

• Design Data Sets: We combine several effects such as
device wear-out and process-voltage-temperature varia-

tion to determine the probability of two types of timing

errors: a few bits in error and many bits in error. These

probabilities are used to create data sets which are used

to train and test our ML algorithm.

• Fault Prediction: Based on the developed data sets, we
use ML techniques to train decision trees which are used

to predict timing faults on the links. We analyze the

effectiveness of our predictors on testing data sets.

• Dynamic Error Mitigation: Once the faults are pre-
dicted, we dynamically use ECC and relaxed timing trans-

mission to mitigate soft errors as well as show the effects

of our mitigation on network energy and performance.

Before we can train or test the ML algorithm, a suitable data

set is required. A data set is a large list of samples consisting of

a label and a set of features. The data set in this case indicates
the number of errors (label) and the conditions under which

the fault may have occurred (features). Therefore, our data set

will, among other uses, provide a true label in which we can
compare our predicted label. In Section II, we will describe
how to obtain the features and true labels and Section III will

describe the machine learning algorithm used to predict labels.

Once we have our predicted label, Section IV describes the

mitigation techniques we will use to avoid errors if necessary.

Finally, we will evaluate the performance of our predictors as

well as the effects of correct/incorrect predictions on network

performance in Section V.

II. DESIGN OF DATA SETS

To develop a data set, we first must create a fault model

which can realistically produce a probability of error in a

system based on a set of parameters. Using this fault model,

we can then create a data set consisting of a large amount

of samples by varying the model’s input values. We can use

this process to create different data sets for each link in the

NoC. Figure 1 shows the complete methodology involved in

obtaining a data set including the fault model shown in the

dotted box. Subsection II-A explains our fault model which

consists of several realistic temperature, delay, and variation

models. Subsection II-B explains the methodology used to

obtain our data sets.

A. Fault Model

Our fault model, shown in the dotted box of Figure 1,

correlates link utilization to temperature and degree of wear-

out to transistor delays. The corresponding temperature and

delays are then passed to the VARIUS model [10] which

incorporates process and voltage variations to determine the

probability of timing errors.

The first input parameter for our model is link utilization. A

high link utilization implies an increased number of link and
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Fig. 1. Our process to create features and labels using fault models.

router traversals which lead to increased energy consumption

and higher temperature. Therefore, the probability of fault will

increase because gate delays become longer as temperature

increases. Using a NoC fault model [17] which integrates

the HotSpot thermal model [40], we correlate link utilization

to temperature. We assume link utilization that ranges from

0.01 to 0.4 flits/cycle which corresponds to temperature values

ranging between approximately 75-104 degree Celsius. In

subsection II-B, we will explain why this range was selected

and how the link utilization is varied.

The next input parameter of our model is device wear-out.

Devices under long-term stress suffer from effects such as

wear-out and failure due to NBTI and HCI [11]. NBTI and

HCI shift transistor parameters over time and can be modeled

through transistor threshold voltage (Vth) [41]. The shift in
threshold voltage causes increased transistor delays according

to the Alpha-power law [42]:

dg ∝
Vdd

μ(Vdd−Vth)α (1)

where dg is the transition delay, μ ∝ T−1/5 (where T is

temperature), and α = 1.3. Therefore, switching based HCI
stress and idle NBTI stress cause wear-out which increases

the delays of transistors and devices become more susceptible

to timing errors.

We consider a permanent fault in the device when ΔVth is
greater than 10% [41]. Therefore, we define three threshold

ranges for wear-out which are below 10%: low (ΔVth=0-3.3%),
medium (ΔVth=3.3-6.6%), and high (ΔVth=6.6-10%). From
Equation 1 we determine the corresponding transistor delays

for each wear-out value. Assuming Vdd = 1V and Vth0= 0.15V ,
the new delays (d) for each wear-out value based on the initial
delays (d0) are:

• Low: d = 1×d0 to 1.00592×d0
• Medium: d = 1.00592×d0 to 1.01190×d0
• High: d = 1.01190×d0 to 1.01796×d0

Based on the wear-out value, a range of delays is calculated

and the average delay is input to the VARIUS model.

The final aspect of our fault model is the process variation

which is integrated as an internal parameter of the VARIUS

model. Process variation has both a systematic component

which is spatially correlated and a random component which

is not spatially correlated. The systematic variation is modeled

by using a function which relates parameter correlation to

distance. The relationship is negative and approximately linear.

For example, two points very close together have transistor

parameters which are highly correlated and two points very

far away have very low correlation. At a distance of φ ,
two points are no longer correlated. We use φ = 1 cm as

experimental results show that gate lengths are correlated up

to approximately half the chip length [6], [10]. Therefore,

depending on link utilization, wear-out, and position on the

chip, we can obtain a probability of error for each link.

B. Data Sets

Next, we must create raw data by (a) inserting various link

utilization and wear-out values, and (b) determining what type

of error occurred. In order to obtain a wide range of input

values, we model an application which ramps up average link

utilization from 0.01 to 0.4 flits/cycle, as shown in Table I.

We stop at 0.4 flits/cycle as most networks saturate before

this point and temperatures approach the bounds of normal

operating temperatures [17]. This model application is run

three separate times for each value of wear-out (low, medium,

and high). The ML model is independent to the order in which

the link utilization or wear-out is varied and only requires a

wide range of values so that all different scenarios can be

handled during runtime. First, to vary the link utilization, we

start at a load of 0.01 flits/cycle and maintain this load for

3,000 cycles. At each cycle, a temperature is selected from

a range of temperatures based on normal bounds for on-chip

temperatures and is modeled as in [17]. For example, at a

load of 0.01 flits/cycle, a temperature would be randomly

selected between 75 and 77 degree Celsius. After 3,000 cycles,

there is a ramp up period of 500 cycles in which the link

utilization increases but the temperature slowly ramps up.

This is to capture the delay in temperature increase after link

utilization has been increased. Table I shows the change in

link utilization and temperature for the model application. This

model application allows our data set to have both a wide range

of input values and a high number of samples.

The output of our fault model, as shown in Figure 1, is the

probability of error (pe) for a single bit line in each of the links.
Our approach is generic and can be applied to many different

scenarios such as various link widths, number of links, and

network topologies. Each link has n data bit lines and there
are a total of L links in the network. We consider a 64-core
concentrated mesh topology with n = 64 and L = 48. Since

all bit lines of a link are relatively close, it is assumed that

pe is the same for all n bit lines within a link. However, each
individual wire of the L total links can have a different pe.



TABLE I
MODEL APPLICATION LINK UTILIZATION AND TEMPERATURE PATTERN.

Load Temperature Duration
(flits/cycle) (Celsius) (cycles)
0.01 75-77 3,000
0.1 76-80 500
0.1 78-82 3,000
0.2 80-89 500
0.2 87-93 3,000
0.3 90-99 500
0.3 95-101 3,000
0.4 97-101 500
0.4 98-104 3,000

Figure 1 shows two samples in our raw data. For each

cycle ti, a new sample is created which consists of the input

temperature (Ti), utilization (Ui), and wear-out (Wi) as well as

the error type (ETi). To determine the error type, pe is used to
experimentally determine if an error occurred in each bit line.

Since there are n bit lines in a link, this creates a bit error
vector of size n, where the value of each index is 0 if there
is no error and 1 if there is an error. From this bit vector we

can determine the error type (ET) by counting the number of

1’s in the bit vector: No error (0), Few Errors (1-2), or Many

Errors (>2). A new sample is created for every cycle in each
run of our model application.

From the raw data, we develop our data set which consists of

features and true labels. Since we are interested in preventing

errors before they occur, we must use currently available

information (features) to predict errors in the future (labels).

Therefore, when creating our data sets, we use inputs from

cycle i as our features and outcomes from cycle i+1 as our
true labels as shown in Figure 1. We can use the process

described in this section to obtain a data set for each link so

that we can predict errors on each link separately. Predicting

errors separately for each link will improve overall accuracy

of the predictions with a low overhead which will result in

lower energy and better performance.

Finally, we randomly split the samples into training, testing,

and validation data. The training data contains 60% of the

samples whereas the testing and validation data each contain

20% of the remaining samples. Since the probability of error is

typically very small, our data set is quite skewed. For example,

if the probability of error is 1% then on average one sample

out of every 100 will have an error. The skewed data set

will make the decision tree training more difficult. Therefore,

to remedy the skewed data, we use a common technique in

which training samples are randomly replicated such that each

label has an equal amount of samples (50,000 samples/label).

Now each label will be fairly represented and machine learning

algorithms can be used on the data as explained in the next

section.

III. MACHINE LEARNING

The complete list of features we consider in our design are:

Temperature (T), Utilization (U), Wear-out (W), and Previous

Error Type (P). The feature values for Temperature are low

X 

ET ETTT ET T ET 

X1 
X2 

X3 

T ET ETTT ET T ET T ET ETTT ET T ET T ET ETTT ET T ET T ET ETTT ET T ET T ET ETTT ET T ET T ET ETTT ET T ET T ET ETTT ET T ET T ET ETTT ET T ET 

ET  {N, F, M} 
ET – Error Type 
N - No Errors 
F - Few Errors 
M - Many Errors 

Fig. 2. Example of a generic decision tree with outcomes that determine the
predicted error type.

(≤84 degree C), medium (≥85 degree C and ≤94 degree C),
and high (≥95 degree C). The feature values for Utilization
are low (≤0.1 flits/cycle), medium (>0.1 and <0.3 flits/cycle),
and high (≥0.3 flits/cycle). The feature values for Wear-out
are low, medium, and high as described in Section II-A. The

feature values for Previous Error Type are “No Errors,” “Few

Errors,” and “Many Errors.”

Each feature can potentially have an effect on probability of

error and we allow the machine learning algorithm to decide

which are the more useful features for predicting errors. The

features can be stored in a small table at each link. The values

of some features, such as Temperature and Wear-out, change

slowly over time; therefore, these features do not need frequent

updating. Link temperature can be estimated by periodically

gathering data from course-grained temperature sensors on

the chip. The work in [11] correlates activity to wear-out.

Therefore, link wear-out can be estimated by keeping a course-

grained counter of link traversals. Link utilization provides

more current information than link wear-out and can be used

in making fine-grained decisions. Finally, Previous Error Type

can easily be updated every time a prediction is made.

In our design, we use decision trees to predict errors

on each of the links. Testing for decision trees consists of

a small number of comparisons. The maximum number of

comparisons equals the number of levels in the tree. In this

paper, we choose the maximum size of the tree to be three

levels as shown in the example tree in Figure 2. This allows

our design to quickly predict a new outcome every cycle.

Each node in the tree represents a feature (X) and the arrows

represent feature values (Xi). For example, a feature could be
“Temperature” and a feature value could be “low.” The leaves

of the tree represent the predicted outcome (ET) and can be

any of the following: No Error (N), Few Errors (F), or Many

Errors (M).

As each link is at a different location in the topology and

process variation is spatially correlated, a separate decision

tree is trained for each link. Training the decision tree is done

offline and uses the ID3 algorithm [43]. In the ID3 algorithm,

the criteria for creating nodes are information gains. Features

with the largest information gain are selected as nodes in the

tree. Algorithm 1 details the process of creating the decision

tree based on the set of training data, D (previously described
in Section II-B), and the set of features, F (Temperature,

Utilization, Wear-out, and Previous Error Type). First, the ID3

algorithm is recursive with the terminating condition being all



Algorithm 1 ID3 algorithm used to build the decision trees

[43].

ID3(Training data D, Feature F):
if all samples in D have the same label:
return a leaf node with that label

let X∈F be the feature with the largest information gain
let R be a tree root labeled with feature X
let D1, D2, ..., Dk be the partition produced by splitting D on
feature X
for each Di∈D1, D2, ..., Dk:
let Ri=ID3(Di, F-{X})
add Ri as a new branch of R

return R

examples in D have the same label. Next, the feature with

the largest information gain is called X and R is the tree root
labeled with feature X. Then, the initial data set D is partitioned
into k separate data sets (D1,D2, ...,Dk) each corresponding to

a value of feature X. Finally, for each data set Di, the ID3

algorithm is recursively called passing it the partitioned data

set Di and a set of features excluding feature X (F −{X}).
The tree root which is returned by the recursive call (Ri) is
added as a new branch to the original tree root R. After the
ID3 algorithm is finished, a complete tree is built with nodes

containing features that maximize the information gain on the

training set. A modification we add to the ID3 algorithm is that

we modify the terminating condition to limit the size of the

tree to three levels so that the number of comparisons during

testing is reduced to only three, resulting in small energy and

latency.

Now we will detail the steps in building a decision tree

in our design using an example training data set. Figure 3(a)

shows the fully built decision tree and Figure 3(b) shows the

steps in building this decision tree. The table titled D in Figure
3(b) is the example data set. There are nine samples in this

data set and each sample has feature values. Some feature

values are omitted by a dash (-) for illustrative purposes of

the example. Also, each sample has a true label for the error

type (ET).

Following the steps in Algorithm 1, it is not true that

all samples in D have the same label so we can move on.

Next, for this example, we assume Temperature has the largest

information gain; Therefore, we let X = Temperature in Step
1 of Figure 3(b). Temperature is now the root of the decision

tree. Next, in Step 2a, D is partitioned by splitting it on the

feature values of Temperature (Low, Medium, and High). After

the splitting, there are now three tables showing each data set,

D1, D2, and D3. Also, since Temperature was already used,
we can remove it from the feature list in Step 2b.

Finally, Step 3 is to recursively call the ID3 algorithm

for each newly partitioned data set. For example, the ID3

algorithm will be used on data set D1 to find the node at
the first branch of the tree. Since all of the samples in this

partitioned data set have the label N, the label is returned and

becomes a node in the tree. The ID3 algorithm will also be

called on D2 to find the node at the second branch in the
tree. Since all of the samples do not have the same label and

F={T, U, W, P}

F={U, W, P} F={U, W, P}F={U, W, P}

X1=Low X2=Med X3=High
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D
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6 High - Med - N
7 High Low High - N
8 High Med High - N
9 High High High - F

Step 1:

Fig. 3. (a) Example decision tree and (b) steps to build the tree. Step 1:
Feature with the highest information gain becomes the root of the tree. Step
2a: Data set is partitioned on the feature values of the root. Step 2b: Root
feature is removed from the feature list. Step 3: Recursively call ID3 on each
newly partitioned data set. Repeat all steps until the tree is completed.

we assume Previous Error has the largest information gain,

Previous Error becomes the next node in the tree. Steps 2a-

3 are repeated: D2 is split, the feature set is reduced further,
and ID3 is called again which results in the labels N, F, and

M. Finally, ID3 is called on D3 which is the third branch
corresponding to a high temperature. The steps are repeated

until all samples have the same label or there are three levels

in the tree. After all nodes in the tree have features or labels,

the result is the completed tree in Figure 3(a).

IV. ERROR MITIGATION AND ROUTER

MICROARCHITECTURE

Once the errors can be predicted, the next step is mitigation

of the errors. We add cyclic redundancy check (CRC) encoder

blocks at the router ports coming from the cores and CRC

decoders at the router ports going to the cores. The top of
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Fig. 4. Examples of CRC, SECDED, and relax transmission mitigation
techniques.

Figure 4 shows an example of a packet transmission using

CRC. When a packet is injected into the network, it is always

encoded with CRC. Before the packet is ejected out of the

network it is always decoded and checked for errors. If errors

are detected at a packet’s destination then the packet must be

retransmitted from the source.

We use the IEEE standard CRC-32 [44]. CRC-32 is a

commonly used error detection code capable of detecting all

one to three bit errors, odd bit errors and a fraction of burst

errors up to the size of the 32-bit check code. Each 32-bit

check code is produced and appended to the tail of each packet

as it is injected into the network, extending the packet size

by 32-bits to a total of 256-bits. When an error is detected

anywhere in the packet, we know the error exists but correction

of the error is not possible with CRC decoding. Mitigation of

the error is concluded with successful packet retransmission.

CRC offers the most coverage in our network but has the

highest overhead. Hence, CRC is reserved only for use at

the source and destination routers. Since the source can often

be several hops away from the destination, we will reduce

the latency and energy overheads of retransmission by error

mitigation at the intermediate hops between the source and

destination.

At the intermediate hops, we use two forms of error mitiga-

tion: (a) hamming codes which have single error correction and

double error detection (SECDED) and (b) relaxed transmission

(RT). An example of packet transmission using SECDED is

shown in the middle of Figure 4. We encode at the output port

of each router with SECDED, then the flit traverses the link

which is susceptible to faults, and finally we decode at the

input port of the next router. If errors are detected and cannot

be corrected then a retransmission must occur. However, only

one flit must be retransmitted and the flit is only retransmitted

one hop as opposed to being retransmitted from the source. If

an error can be corrected then a retransmission can be avoided.

For error correction, SECDED is implemented using a (72,64)

hamming code with a maximum error correction tolerance of

1-bit per flit. All single bit errors in the 72-bit encoded flit will

TABLE II
LATENCY OVERHEADS OF EACH MITIGATION TECHNIQUE GIVEN THE

NUMBER OF TIMING ERRORS.

CRC SECDED RT

True
Outcome

No Errors No Overhead No Overhead 2 Cycle Delay
Few Errors Full Retransmission No Overhead

or 
1 Hop Retrans.

2 Cycle Delay

Many Errors Full Retransmission Full Retransmission 2 Cycle Delay

be corrected upon injection into the router. Overall, SECDED

always has an energy overhead but only a latency overhead if

a retransmit is required.

The second form of error mitigation is RT and is shown at

the bottom of Figure 4. RT waits an additional cycle before

reading the data at the input port; essentially, giving the flit

twice as much time to traverse the link. This will relax the

timing constraint on the transmission of the flit and reduce

the probability of a timing error to very close to zero. RT can

be done by, first, stalling the flit and sending a signal to the

input demultiplexer of the downstream router. The downstream

router is now notified to wait two cycles before reading data.

After the router is notified, the flit begins the two cycle link

traversal. Compared to a regular flit transmission, RT has no

extra energy overhead but has an extra latency overhead of

two cycles: one cycle to signal the downstream router and

one additional cycle for data transmission. Overall, we can

offer error mitigation on a hop-by-hop basis using SECDED

or RT and we can offer greater error mitigation from source

to destination using CRC.

Each error mitigation technique may have latency and

energy overheads depending on different outcomes. Table II

summarizes the latency overheads of each mitigation technique

based on how many errors are there in the data, i.e. the true

outcome. For CRC, if there are any errors, then the full packet

will be fully retransmitted from the source. For SECDED, if

there are no errors, then there will be no additional latency

overhead. However, if there are a few errors, then there will

be two possibilities: (1) a single error will be corrected and

there will be no latency penalty, or (2) two errors will be

detected in which only one flit will be retransmitted for one

hop. If there are many errors, then it will only be detected

by the CRC at the destination and a full retransmission will

be required. For RT, there will be a two cycle delay for any

number of timing errors.

Table III summarizes the energy overheads of each mitiga-

tion technique. For CRC, there will always be the energy to en-

code/decode as well as the possibility for additional energy due

to a full retransmit. When SECDED is employed, there will

be the SECDED encoder/decoder energy. Additionally, there

can be an energy overhead from either a full retransmission

or a one hop, one flit retransmission. The energy dissipation

for a one hop retransmission will be much lesser than the

energy dissipation for a full retransmission. Lastly, RT has no

additional energy overheads for timing errors.

As each form of error mitigation has either a latency or

energy overhead, we will reduce these additional overheads



TABLE III
ENERGY OVERHEADS OF EACH MITIGATION TECHNIQUE GIVEN THE

NUMBER OF TIMING ERRORS.

CRC SECDED RT

True
Outcome

No Errors CRC SECDED No Overhead
Few Errors CRC + Full 

Retransmission
SECDED

and/or
1 Hop Retransmission

No Overhead

Many Errors CRC + Full 
Retransmission

SECDED + Full 
Retransmission

No Overhead
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Fig. 5. Router microarchitecture showing the feature table, predictors,
encoders, decoders, and CRC blocks.

by using prediction to dynamically enable and disable the

SECDED and RT. Figure 5 shows the router microarchitecture

in our network including the predictor blocks. There are also

virtual channels (VCs) to buffer flits at the input ports and

avoid deadlocks. We use a crossbar to switch the flits from

the input ports to the output ports as well as output buffers to

store packets at the output ports when needed. The router is a

typical credit-based, pipelined router with route computation

(RC), virtual channel allocation (VC), and switch allocation

(SA) blocks. Routers can be connected to other routers via

links in any topology. The CRC blocks are shown at the cores

as we employ this error mitigation only at the source and

destination. The SECDED encoders are at the output ports

and the SECDED decoders are at the input ports as this error

mitigation is used on a hop-by-hop basis.

Based on the output of the prediction algorithm, the network

can choose when to enable SECDED, when to enable RT,

or when to disable both. The features previously explained

are stored in the features table shown in Figure 5. For each

output port, the features table has an entry which stores the

feature values for temperature (T), utilization (U), wear-out

(W), and previous error type (P). Additionally, at each output

port there is a predictor block (predictor0 to predictorm)
which implements each link’s unique decision tree using low

overhead comparisons. The predictor takes a table entry as

input and then outputs the predicted error type as well as an

enable signal. Based on the predicted error type (ET) three

different actions can occur: 1) If ET=“No Errors” then no

action is taken, 2) If ET=“Few Errors” then the flit is encoded

with SECDED before the link is used, and 3) If ET=“Many

Errors” then the flit is sent using RT. Therefore, if SECDED

is used then the predictor enables the encoder and forwards

the predicted ET to the downstream router so that it knows to

decode the flit when it arrives. Similarly with RT, the predictor

forwards the predicted ET to the downstream router so that the

input port knows to wait an additional cycle before reading the

data.

Figure 6 shows an example of packet transmission with and

without prediction. With both prediction and no prediction, we

assume CRC is always enabled in order to detect errors at the

destination. Without prediction, SECDED and RT cannot be

dynamically enabled and disabled in an intelligent manner.

Therefore, in this particular example we assume SECDED is

always enabled and RT is always disabled. With no predic-

tion, energy is dissipated at every hop due to the SECDED

encoders/decoders. If no errors occurred, then this energy

dissipation was unnecessary. With prediction, when our design

correctly predicts that no errors will occur, then the SECDED

encoders/decoders can be disabled saving power. When a few

errors are correctly predicted, the SECDED encoders/decoders

are enabled and a few bit errors can be mitigated in the same

manner as if SECDED is always enabled. Lastly, with no

prediction, if many errors occur on the link, it will not be

detected until the packet reaches the destination. However,

with prediction, if many errors can correctly be predicted then

RT can be employed possibly avoiding a full retransmission.

However, with any prediction technique there is also the

possibility of misprediction. If our design incorrectly predicted

that no errors occur then this misprediction will lead to a

full retransmission. If our predictor incorrectly predicts that

a few errors will occur then the SECDED will unnecessarily

be activated, wasting energy. Lastly, a misprediction of many

errors will lead to an unnecessary two cycle delay. Therefore,

it is important that our predictor performs well so that the

advantages of correctly predicting outweigh the misprediction

penalties as evaluated in the next section.

V. EVALUATION

In this section, we first evaluate the overhead of the error

mitigation and the predictor module. The energy and area of

the links and other router components were evaluated with the

DSENT NoC modeling tool [45] using a 45 nm technology

library, a supply voltage of 1.0 V , and a frequency of 2 GHz.
To evaluate our custom mitigation and predictor modules, the

Synopsys Design Compiler with the same 45 nm technology

library, 1.0 V supply voltage, and 2 GHz frequency was used.
Next, we discuss the results of the trained decision trees.

Training is done offline; thus, there is no runtime latency for

training. For each link in the network, we train a separate

decision tree using separate training data sets. The decision

trees are trained using the ID3 algorithm and each training

data set initially has 50,000 samples. Since the data is skewed,
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Fig. 6. Example of packet transmission with and without prediction.

samples are replicated, as explained in Section II-B, to bring

the total size of the training data to 150,000 samples. Then we

test each decision tree using separate testing data sets for each

link. Each testing data set has 10,200 samples. We compare our

prediction design which labels samples using decision trees

(DTs) to a technique which randomly assigns labels (Rand)

and a technique which always applies SECDED.

Finally, we evaluate our design on a 64-core, concentrated

mesh (CMesh) [46] network as shown in Figure 7. The net-

work parameters are also shown in Figure 7. We use a packet

size of 4 flits and each flit is 64 bits. We use ACK/NACK

signals at the destination to signal successful/unsuccessful

packet transmission and ACKs/NACKs per hop to signal

successful/unsuccessful flit transmission [47]. Retransmission

buffers are used at the routers which store the data until an

ACK is received. If a NACK is received then the data is

retransmitted. We assume that the ACKs/NACKs use control

lines which are separate from the data lines. We inject timing

errors on the data links every time a flit is transmitted.

Additionally, to account for all other errors which are not

timing related, we also inject data corruption faults which

cause bits of data to be unexpectedly changed. Therefore, data

corruption faults, unlike timing faults, are not due to late data

arrival. We inject errors individually on each data link with a

certain probability, based on our model described in Section

II-A, which incorporates link utilization, temperature, process

variation, and wear-out. For fair evaluation, the training and

testing data follow the same probability distribution and the

test data is independent of the training data per standards for

all machine learning algorithms.

We execute real traffic traces on our network using work-

loads from the Splash-2, PARSEC, and SPEC CPU2006

benchmark suites. Traces were collected using the full

execution-driven simulator SIMICS from Wind River [48]

with the memory package GEMS [49]. The traffic collected is

bimodal traffic with a mix of short (1 flit) packets and long

(5 flit) packets. We assume a 2 cycle delay to access the L1

cache, a 4 cycle delay for the L2 cache, and a 160 cycle

delay to access main memory. For each simulation, we warm

+y 

+x 

12 13 14 15 

8 9 10 11 

4 5 6 7 

0 1 2 3 

Core Router Link 

Parameter Value 
Cores 64 

Concentration 4 cores 
Routers 16 

Data Link Width 64 bits 
Number of Links 48 

Packet Size 4 flits 
Flit Size 64 bits 

VCs 4 per port 
VC Size 4 flits 

Fig. 7. Concentrated mesh with network parameters.

TABLE IV
OVERHEAD OF ROUTER COMPONENTS.

Energy Area Timing

(pJ) (μm2) (ns)
64b Link 10.333 135.2 0.515

Buffer (1 flit) 1.154 1,017.3 0.07
Switch 1.572/flit 15,402 (8x8) 0.05

up the simulator until a steady state is reached then we fix

the number of packets sent (not including retransmissions) to

32,000 packets.

A. Overhead of Error Mitigation and Predictors

The overhead of the network components are shown in Table

IV. The energy of a 64 bit, 4 mm long link was found to

be approximately 10.333 pJ. In order to simulate a design

with aggressive clocking, the delay of the link (0.515 ns) is

designed to be 3% higher than the clock period (0.50 ns).

Since the clock period is less than the average arrival time of

the data, the link is susceptible to timing errors which we can

mitigate with SECDED and RT.

Table V shows the energy, area, and timing overheads of

the CRC, SECDED, and predictor modules. The energy for the

CRC encoder and decoder are both 0.620 pJ. CRC uses several

shift registers to obtain a check code. The value of this check

code determines if there are errors or not. The process is the

same at both the encoder and decoder; therefore, the energy,

area, and timing are the same for both modules. The timing of

the encoder/decoder is 1.09 ns. Since our clock period is 0.50

ns, encoding will take three cycles and decoding will also take

three cycles. Overall the CRC accounts for approximately 18%

of the total router energy and 14% of the total router area. The

energy, area, and latency of CRC is the largest of our error

mitigation techniques which is the reason why it is reserved

only for source and destination routers.

For SECDED, the encoder energy is approximately 0.072

pJ which is approximately 2.6% of the total router energy. The

decoder energy is the same if there are no errors, but higher

if errors are corrected or detected. Since our SECDED uses a

(72,64) hamming code, there is also an energy overhead for

transmitting the additional 8 parity bits across the network

links. The energy for parity bit transmission is approximately
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Fig. 8. Decision trees built using the ID3 algorithm for a +x link and a +y link at router 0.

TABLE V
ERROR MITIGATION AND PREDICTOR OVERHEADS.

Module Energy Area Timing

(pJ) (μm2) (ns)
CRC Encoder 0.620 2,680.0 1.09
CRC Decoder 0.620 2,680.0 1.09
CRC Total 1.240 5,360.0 2.18

SECDED Encoder 0.072 285.6 0.24
SECDED Decoder 0.227 930.5 0.38
SECDED Parity 1.292 - -
SECDED Total 1.591 1,216.1 0.62
Predictor Total 0.002 29.8 0.17

1.292 pJ which is 11% of the total link energy. The latency

for SECDED encoding is only 0.24 ns and can be combined

with the output buffering router stage. Using the Synopsys

Design Compiler, the latency of the buffer stage is only 0.07

ns. Therefore, buffering and SECDED encoding will take a

total of 0.31 ns which is well below our clock period of 0.50

ns. Similarly, SECDED decoding can be combined with the

buffer write stage at the input port.

Finally, our predictor module consumes a very low energy

of 0.002 pJ and occupies only 29.8 μm2 of area. The predictor
module implements the decision tree which uses, at most, three

comparisons for each level in the tree; therefore, the overhead

is very small. The latency of the predictor module is only 0.17

ns which is under the clock period, so predictions can easily

be made every cycle.

B. Trained Decision Trees

Using the training data sets and the ID3 algorithm we chose

to train a separate decision tree for each link in the topology

due to the spatial correlation of process variation. While we

chose CMesh, our approach is generic and can be applied

to any topology. Figure 8 shows the resulting decision trees

for a couple different links. Temperature is the root node for

each tree in Figure 8 and was found to be the root node for

every link in the topology. As temperature has such a strong

effect on probability of timing errors, this is expected. At low

temperatures, the probability of error is low. Therefore, 45 of

the 48 trees (93.8%) have the N label as the leaf of the low

temperature branch, the other trees have at least one F label

in the subtree of the low temperature branch. No tree has a M

label anywhere in the low temperature branch. At the second

level, 46 of the decision trees had the Wear-out feature or a

label at each node. The remaining two trees had a combination

of Utilization and Wear-out at the second level. The Wear-out

feature was so common because it is another strong predictor

of timing errors. At the third level of the trees, the nodes vary

mostly between the Utilization and Previous Error features

with only two trees using the Wear-out feature. The Previous

Error feature, being a weaker predictor at the bottom of the

tree, has a high entropy, or uncertainty, which results in leaves

that have less correlation to the feature values. However, the

inclusion of multiple features in the decision trees results in

more accurate predictions.

C. Performance of Decision Trees on Timing Errors

Next, we will examine the confusion matrix for our decision

trees. A confusion matrix is one way to show the performance

of a prediction algorithm. Each column in the matrix is a

predicted label and each row is the true label. The confusion

matrix shows how often a predictor confuses labels. The

confusion matrix for the +x link of router 0 is shown in

Table VI. The diagonals of this matrix show the number of

test samples that were correctly labeled. For example, 7,508

out of the 10,200 test samples were correctly labeled N. The

non-diagonal elements of the matrix show the number of test

samples that were mislabeled. For example, 2,552 samples

were labeled F when the true label was actually N.

The average confusion matrix for all the decision trees is

shown in Table VII. When the sample is correctly labeled,

there are no additional overheads. However, mislabeled sam-

ples will cause either additional latency or energy overheads.

Table II and Table III from Section IV detail the overheads

for each possibility in the confusion matrix. For example, if a

sample is labeled F when the true label was actually N then the

flit will be encoded/decoded with SECDED. However, since

there were actually no errors, there will be a slight energy

overhead due to the unnecessary SECDED encoding/decoding

but no latency overhead. The exact energy of SECDED and

CRC encoding and decoding was shown in Table V and the

effects of the mislabeled samples on network performance will

be shown in Section V-D.

From the average confusion matrix, we calculate the ac-

curacy of our decision trees (DTs) compared to Rand and

SECDED. The results are shown in the first column of Table

VIII. The DTs correctly predict the true label in approximately

70.6% of the samples which improves over a random labeling



TABLE VI
CONFUSION MATRIX FOR +X LINK OF ROUTER 0.

Predicted
N F M

True
N 7,508 2,552 0
F 22 118 0
M 0 0 0

TABLE VII
CONFUSION MATRIX AVERAGED OVER ALL DECISION TREES.

Predicted
N F M

True
N 5,981.8 1,902.8 483.1
F 121.1 565.0 334.1
M 0.8 159.8 651.5

and SECDED which always assumes that a few errors will

occur. Since the probability of error is low, many samples will

have no errors which is called a skewed data set. Therefore,

a common and better metric to consider is called the F-score.

The F-score is a different measure of accuracy used for skewed

data and is an average of the precision and recall which are

measures of relevance. Table VIII shows the average F-score

for each labeling technique. The DTs have the highest F-score

at 61.0%. On average, DTs have a F-score 41.3% higher than

Rand and SECDED.

Some mispredictions cause a small one cycle delay or a

small encoding overhead. However, there are three cases in

the confusion matrix in which mislabeling in our design will

cause a full retransmission. These cases are in the lower left

triangular part of the confusion matrix: 1) Predicted N/True F,

2) Predicted N/True M, and 3) Predicted F/True M. As these

mispredictions are most costly, the total number of these three

cases should be minimized. The third column of Table VIII

shows the percentage of samples which will require retrans-

missions due to a timing error. In our design, on average, only

2.8% of the samples cause a full retransmission compared to

8.6% and 8.0% for Rand and SECDED, respectively.

D. Network Performance

After evaluating the performance of the decision trees on

timing errors, we now introduce data corruption errors and

evaluate the effect of all soft errors on network performance.

First, in Figure 9, we show the percent of retransmitted

packets. The percent of retransmitted packets for each design

is relatively high due to the aggressive clocking, the multi-

hop communication, and the high operating temperatures we

assume. However, DTs can reduce the number of transmissions

by 26.8% on average over the other designs. SECDED can

prevent retransmission due to a few timing errors or a few data

corruption errors; however, with many errors, a full retrans-

mission is still required. The Rand labeling incurs the most

retransmissions due to the high number of mispredictions.

In Figure 10, we evaluate application speedup relative to

Rand which is equal to the ratio of execution time of a

given design to the execution time of Rand. Averaged over

all applications, DTs execute faster than other designs with a

speedup of approximately 3.31×. The ability of DTs to accu-
rately predict timing errors reduces latency delays such as one-

TABLE VIII
ACCURACY, F-SCORE, AND PER-HOP RETRANSMIT PERCENT DUE TO

TIMING ERRORS FOR OUR DECISION TREES (DTS) COMPARED TO OTHER

LABELING TECHNIQUES.

Accuracy Fscore Retransmit 

DT 70.6% 61.0% 2.8% 

Rand 33.3% 33.3% 8.6% 

SECDED 10.0% 6.1% 8.0% 
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Fig. 9. Percent of packets that require full retransmission.

hop retransmissions, full retransmissions, and unnecessary RT

activations. Also, the ability of SECDED to detect and correct

data corruption errors reduces transmissions; thereby, reducing

the execution times. The static SECDED design always applies

SECDED so it can avoid some one-hop flit retransmission;

however, many errors will cause a full retransmission. The

Rand design has a long execution time on average due to the

large number of mispredictions.

Finally, we examine the component breakdown for the

energy per flit in Figure 11. Due to space constraints, we

only show nine applications. During simulation, we calculate

the total energy consumption for all the flits then we divide

by the number of error-free flits which is fixed to 128,000

flits, or 32,000 packets, for all simulations. Therefore, designs

with a higher number of retransmissions will require more

energy to successfully transmit 128,000 error-free flits and will

have higher energy per flit values. Our DT design reduces

energy per flit by approximately 60.0% on average over all

other designs. The main reason for this reduction is the fewer

number of one-hop and full retransmissions due to correct

predictions. Additionally, DTs can reduce the SECDED energy

over SECDED and Rand when predictions are correct.

E. Other Failure Rates

Our design targets aggressive timing constraints in which

the mean data arrival time is 3% longer than the clocking

period. In this section, we will evaluate the effects of more
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Fig. 10. Application speedup relative to Rand.
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TABLE IX
ACCURACY, FSCORE, AND PERCENT RETRANSMITS FOR DESIGNS WITH

MEAN DATA ARRIVAL TIMES 1% LONGER (+1%) AND 1% SHORTER (-1%)
THAN THE CLOCKING PERIOD.

+1% Accuracy Fscore Retrans. 

DT 71.1% 51.8% 1.0% 

Rand 33.4% 33.3% 2.9% 

SECDED 5.6% 3.5% 1.5% 

-1% Accuracy Fscore Retrans. 

DT 77.7% 46.1% 0.1% 

Rand 33.4% 33.6% 0.5% 

SECDED 1.5% 1.0% 0.0% 

relaxed timing constraints which will effectively lower the fail

rates of the links. Table IX shows the accuracy and retransmit

percentage of a mean arrival time 1% longer than the clocking

period (+1%) and the accuracy of a mean arrival time 1%

shorter than the clocking period (-1%). Our DTs have been

trained and tested with the new mean arrival times. Due to

the lower failure rates, DTs have less of an advantage as the

timing constraint becomes more relaxed. However, as shown

in Figure 12, DTs can still reduce energy consumption due to

dynamic SECDED enabling and less retransmissions.

VI. CONCLUSIONS

With NoCs becoming the communication standard for

multi-core systems, the reliability of network components

becomes an important concern. Network links, in particular,

are susceptible to timing errors due to stringent timing con-

straints, parameter variation, and device wear-out. Proactive

(a) +1% Mean Arrival Time

(b) -1% Mean Arrival Time
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Fig. 12. Energy per flit breakdown for (a) a +1% mean arrival time and (b)
a -1% mean arrival time relative to the clock period.

fault-tolerant techniques can prevent errors before they occur

or reduce the probability of faults. In this paper, we develop a

new approach to proactive fault-tolerance which uses machine

learning (ML) algorithms to predict and mitigate errors.

We provide a comprehensive fault-prediction system in

which we (a) create a methodology to obtain realistic data

sets, (b) train a ML algorithm to predict timing faults on links,

and (c) mitigate for soft errors. We develop a fault model,

which accounts for parameter variation and device wear-out,

to create training/testing data sets for the ML algorithm.

Using the training data set and the ID3 algorithm, we create

decision trees which can be used to accurately predict the

number of errors. Finally, we dynamically mitigate the errors

using a combination of error correction codes (ECC) and a

relaxed transmission. Our results show that the energy (0.002

pJ), area (29.8 μm2), and latency (0.17 ns) overheads of the
predictor implementation are minimal. Decision trees are able

to accurately predict timing errors 60.6% better than a static

SECDED technique. Our network results indicate a 26.8%

reduction in packet retransmissions, a 3.31× speedup, and an

energy savings of 60.0% on average over other designs.
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