
Volume 72, number 1.2 OPTICS COMMUNICATIONS l July 1989 

A PARALLEL ARCHITECTURE AND ALGORITHMS FOR OPTICAL COMPUTING 

Ahmed LOURI 
Department of Electrical and Computer Engineering, University of Arizona, ECE Building Room 320J, Tucson, AZ 85 721, USA 

Received 28 November 1988 

A new parallel optical architecture is introduced for computing massively data-parallel applications. The system processes two- 
dimensional binary images as basic computational entities. The processing is based on the optical symbolic substitution (SS) 
technique. New optical SS rules are introduced as well as a technique for designing and mapping data-parallel algorithms onto the 
proposed architecture. Implementation issues and performance analysis are also considered. 

1. Introduction plementation and a technique for mapping parallel 
algorithms onto it. 

Along with the tremendous progress in science and 
technology, processing of large amounts of data in 
real-time has been increasingly required in a wide 
variety of applications. Examples of these applica- 
tions include signal and image processing. A com- 
mon factor of these applications is the high degree of 
data-parallelism in which simple arithmetic and logic 
operations are simultaneously applied across all the 
data points. Current electronic computing systems 
are not capable of dealing with the computational 
requirements of massively data-parallel applications 
due primarily to the limited processor-memory 
bandwidth (the von Neumann bottleneck) and the 
lack of adequate interconnects for inter-processor 
communications. 

The driving features of optical systems are the 
massive fine-grain parallelism and the high degree of 
communication flexibility. Large images of bright and 
dark spots can be moved around with a great ease. 
These attributes are well suited for applications that 
require processing large amounts of structured data 
such as multi-dimensional arrays and that favor 
SIMD (single instruction multiple data) mode of 
computations. In recent years, several SIMD optical 
architectures of varying degrees of flexibility and de- 
sign complexity have been proposed [ I -5 ] .  Ex- 
plored here, is a parallel architecture for massively 
parallel computing that is amenable to optical im- 

2. The bit-plane architecture 

Fig. I depicts a block diagram of the basic com- 
ponents of the bit-plane architecture. The architec- 
ture manipulates bit planes (or binary images) as 
basic computational entities. Each bit plane i cor- 
responds to a weight factor 2' in the binary repre- 
sentation as shown in fig. 2. Up to three bit planes 
can be processed simultaneously. For images ofn  × n 
elements, it follows that up to 3n 2 operations are 
performed concurrently. The heart of the architec- 
ture is the processing unit. Locally, this unit can be 
viewed as a bit-serial or a bit-slice processor, since it 
performs one logical operation, on one, two or three 
single-bit operands. Globally, it can be viewed as a 
plane-parallel processor, since it performs the same 
operation on a large set of operands encoded as bit 
planes in parallel. This bit-serial processing allows 
flexible data formats and almost unlimited precision. 

2.1. The processing unit 

The processing unit operates in the SIMD mode of 
computation, where the same operation is applied to 
all the data entries. In the proposed system, pro- 
cessing is based on the optical symbolic substitution 
logic [ 1 ]. Information is coded as spatial symbols in 
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Fig. 1. The architecture of an optical bit-plane array processor. 
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Fig. 2. Data representation as a stack of bit plancs. 

the input planes. Computation proceeds in trans- 
forming these symbols into other symbols according 
to a set of  symbolic substitution rules specifying how 
to replace every input symbol. The processing unit 
is equipped with three fundamental operations: a 
logical NOT which inverts all the entries of an input 

plane, a logical AND, denoted by A, that performs 
the logical and of the overlapping bits of  two bit 
planes, and a full ADD, denoted by ~ ,  that performs 
the full addition of the overlapping bits of  the three 
input planes. By overlapping bits, it is meant bits with 
the same cartesian coordinates (i,j) in the input 
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planes. These operations constitute a complete arith- 
metic and logic set capable of computing any arith- 
metic or logic function. 

2.2. Input~output data routing 

The data represented as bit planes is fed to the sys- 
tem through three input planes, namely A-, B-, and 
C-plane as shown in fig. 1. Depending on the fun- 
damental operation needed at a given computational 
step, the input combiner performs three data move- 
ment functions: for the logical NOT, it simply latches 
the relevant input plane to the processing unit. For 
the logical AND, the data movement required is 
called the 2-D perfect shuffle. This function performs 
the shuffling of the row position, i, of  the data such 
that the overlapping bits from the two planes be- 
come spatially adjacent. This function does not af- 
fect the column position, j. The data movement re- 
quired for the full ADD operation is called the 2-D 
3-shuffle. This function is similar to the 2-D shuffle 
function except that it performs a 3-way shuffling of 
the rows of the three input planes [5 ]. 

The output router is responsible for directing the 
processed data to its appropriate destination. It also 
performs three data movement functions, namely, 
feeding back to the input combiner, a partial result 
such as a carry bit plane resulting from a full ADD 
operation, sending a final result to the data memory 
for storage, and shifting the output either in the X or 
Ydirection by a variable number of pixels. This shift 
enables communication between pixels in the plane. 
By means of this spatial shifting, data can be moved 
among widely and at arbitrarily separated locations 
in the plane. 

3. Optical implementation considerations 

In order to process information optically, we use 
light intensity and positional coding for the data rep- 
resentation. A possible representation is to encode 
the logic value 0 by two pixels dark-bright, and the 
logic value 1 by the inverse pattern, bright-dark as 
shown in fig. 3a. In this coding scheme, a logic value 
is represented not only by the intensity of the bright 
pixel but also by its position, which has some im- 
plementation advantages [6 ]. 

3.1. Optical substitution rules for 2-D arithmetic 
and logic 

Figs. 3 (b -d)  depicts the symbolic substitution 
rules required to optically implement the fundamen- 
tal operations: logical NOT, logical AND, and full 
ADD. These SS rules are derived from the truth ta- 
ble specifications of these operations. The left-hand 
side patterns (or search patterns) of the SS rules rep- 
resent the input combinations and the right-hand 
sides (or replacement patterns) represent the table 
entries. The full ADD operation manipulates three 
bits which gives rise to eight combinations. If we put 
the bit symbols on the top of each other, we produce 
eight SS rules for the full ADD. Similary, the logical 
NOT, and AND give rise to two and four SS rules 
respectively. Note that for the logical AND and the 
full ADD operations, each bit is provided by a sep- 
arate bit plane. These bits have the same coordinates 
i, j in each plane. The grouping of bits into left-hand 
patterns is accomplished by the data movement 
functions described earlier. Optical implementation 
of the two processing steps involved in symbolic sub- 
stitution (pattern recognition and pattern substitu- 
tion) have been suggested by several researchers [ 6-  
9]. 

3.2. Implementation of the processing unit 

In order to process several SS rules simultane- 
ously, the output of the input combiner is replicated 
a number of times equating the number of SS rules 
to be activated at a given stage of computation" for 
example, to perform the pairwise addition of three 
input planes, we need to replicate the formatted plane 
(output of the input combiner) eight times corre- 
sponding to the eight SS rules associated with it. Each 
copy is sent to one of the eight SS rules r~ to r8 in fig. 
3. After the necessary substitutions, the outputs of all 
the active SS rules are optically superimposed to form 
the processed result. Thus the processing unit can be 
implemented with three modules, namely, an ADD 
module, an AND module and a NOT module as il- 
lustrated in fig. 4. Each module comprises the SS rules 
of the corresponding operation. A dynamic beam 
steering element (an acousto-optic or electro-optic 
deflector) is used to deflect the input plane to the 
desired module. 
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Fig. 3. Optical SS rules for the fundamenta l  operation: full ADD, logical A N D  and logical NOT. 

3. 3. Data routing and memory organization 

The input and output router perform only data 
movement functions, no processing is required. A 
wide variety of  optical methods can be imagined for 
realizing the data movement  functions described 
earlier [ 10 ]. 

To maintain the 2-D processing throughout the 
system, the data memory must be bit-plane address- 
able. For single plane storage, such as the input and 
output planes, SLM technology and bistable optical 
latches [I 1,12] can be used. However, this would 
not be sufficient to build a data memory unit capable 
of  holding a large number of  bit planes. At present 
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time, no real-time optical memory exists that can 
achieve read and write of optical data in 2-D format 
at high-speed. However, volume holograms, with 
their ability to store information in three dimensions 
show the potential for a dramatic increase in optical 
storage density [13]. High storage density can be 
achieved in random access optical memory by re- 
cording stacked holograms in photorefractive crys- 
tals. Another way of implementing the data memory 
would be the extension of the optical disk technol- 
ogy. Although optical disks are write-once today, their 
extremely large storage capacity may render their 
nonerasability relatively unimportant for the life- 
time of the computation intended by the optical ar- 
chitecture. The execution sequence and the data flow 
may be controlled by a very. fast microprocessor that 
executes an instruction program and generates con- 
trol signals to the optical devices. 

4. Mapping data-parallel algorithms 

The bit-plane architecture exploits data parallel- 
ism at the hardware level, which enables it to process 
an entire data plane at once. To enforce this capa- 
bility at the algorithm design level, we view the de- 
sign and the mapping process as a hierarchical struc- 
ture as shown in fig. 5. At the highest level of the 
hierarchy is the application we wish to solve, i.e. sig- 
nal and image processing, vision, radar application, 
etc. The next level identifies the various algorithms 
that can be used to compute these applications; these 
include matrix algebra, numerical transforms, solu- 
tions of partial differential equation, etc. A further 
analysis of these algorithms reveals that they share 
a common set of  high-level operations, which we call 
computing substructures. These substructures can in 
turn be decomposed into a set of fundamental op- 
erations such as the full ADD, the logical AND and 
NOT. The rationale behind this approach is that nu- 
merous data-parallel algorithms share common fea- 
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Fig. 5. A hierarchical top-down approach to the mapping of algorithms onto the bit-plane architecture. 

tures such as localized operations, intensive com- 
putations, matrix operations and communication 
patterns. The high-level computing substructures are 
meant to capture these features. These substructures 
are directly mapped onto the hardware, and parallel 
algorithm are built upon these constructs so as to 
provide an efficient algorithm-architecture mapping. 
In this paper, we focus on the implementation of a 
sample of these computing substructures, and show 
how they can be used to efficiently map parallel al- 
gorithms onto the architecture. 

In what follows, the boldface notation i.e. X, Y etc. 
denotes a data plane (or a stack of bit planes), and 
the italic notation (i.e. X, Y) designates a single bit 
plane. The notation A (B or C) +X is interpreted as 
data transfer from memory location X to input plane 
A (B or C) . The notation Xt Y denotes data transfer 
from memory location Y to X. This involves loading 
Y, going through the processing unit without any ef- 
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feet, and storing it in .E The notation Cc0 is inter- 
preted as loading the C-plane with a zero bit plane 
(all entries are 0). Loop indices and parameter cal- 
culation such as “for i = a to b” should be interpreted 
as control instructions that are executed by the con- 
trol unit. 

4.1. 2-D addition/subtraction 

This substructure refers to the addition (subtrac- 
tion) of corresponding elements of two nxn data 
planes X and Y of integers. The result is a data plane 
S = {Q}, where so = Xi, * y,, for i, j= 1, . . . . it. Let X be 
an n x n q-bit planes, X,_ , , X,_ 2, . . . . X0 where q is the 
precision of the operands, X0 being the least signif- 
icant and X,_ , being the most significant bit planes 
respectively. Similar considerations take place for the 
data plane Y, the procedure is as follows 
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Procedure 2-D Addition(X,Y) 
begin 

C,--0; 
for k : = 0  to q -  1 do 

A,--X~; 
B~-Y~; 
&, Coot.--A~B~C,.; 

endfor 
s. ,-c; 

end 2-D Addition 

The notation &, Com,--A~B~Cm, in the above 
procedure, designates the addition of bit planes A and 
B together with the previous carry Ci.; the sum bit 
plane is to be stored in & and the resulting carry bit 
plane, Cou, is routed back to input plane C(6",, and 
Cou~ represent the same physical location). The pro- 
cedure starts by initializing the C-plane to zero, and 
loading bit planes Xo, Yo into A-plane and B-plane 
respectively. The processing unit applies the full ADD 
SS rules simultaneously to the 2-D 3- shuffled plane. 
The sum bits are extracted from the output plane 
through masking operations and stored in So, and the 
carry bits are extracted and fed back to the C-plane 
for the next iteration, while the memory unit loads 
the bit planes X~ and Y~ in the A-plane and B-plane 
respectively. The whole process continues until Xt_ 
and Yq_ ~ are added and the sum So, S~ ..... Sq stored 
as a stack of bit planes in the memory. The addition 
of two q-bit planes is done in q iterations, regardless 
of the number of  operands to be added. 

Representation of numbers in two's complement 
form allows 2-D subtraction by adding few addi- 
tional steps to the 2-D addition procedure. The pair- 
wise subtraction of two data planes X, Y is done by 
first forming the two's complement of  the subtra- 
hend Y, then add it to X, using the 2-D addition 
substructure. 

4.2. 2-D multiplication 

This substructure refers to the multiplication of 
overlapping elements of  two data planes. Let X and 
Y be as described previously, then the product P is 
a 2q-bit planes P=P2q-te2q-2...eo, where pu=xo×y,j. 
This substructure uses the logical AND and the full 
ADD operations. The complete procedure is as 
follows 

Procedure 2-D Multiplication(X,Y) 
begin 

for k : = 0  to 2 q -  1 do Pk,-0; 
for l: = 0 to q-- 1 do 

C,-- 0; 
for m : = 0 t o q - I  do 

A ,-- X,,; 
B*-- Yg 
B,--AAB; 
A*--P,,+g 
Pro+l, C,--A~B~)C; 

endfor 
&+,,--C; 

endfor 
end 2-D Multiplication 

The time complexity of the 2-D multiplication is 
O(q2),  independent of the number of pairs to be 
multiplied. Note that, unlike the conventional shift 
and add multiplication algorithm, we did not need 
to shift the previous partial product to generate the 
current one. Instead, we start the addition at the bit 
plane corresponding to the amount of  shift required. 

4.3. 2-D shift 

We define two substructures for shifting a data 
plane by a variable number of pixels. The shift con- 
sidered here is the logical shift, where columns (or 
rows) of 0s enter the opposite direction of the shift. 
Given P = P q - t  P~->..Po, and X=Xq_l Xq_~_...Xo, we 
define a horizontal shift substructure, denoted by 
H,~(P), to be the data plane P shifted in the X-axis 
by a columns ( +  ct for positive shift, and - c t  for 
negative shift). The amount of shift a is applied to 
every bit plane P, comprising the data plane P. The 
shifted plane can be either stored in itself or in a dif- 
ferent memory location, therefore the notation 
X,--H~(P) is interpreted as shifting the data plane P 
by a columns and storing it in X. Similarly, we de- 
fine the vertical shifting operation, denoted by 
V,,(P), to be the data plane P shifted along the Y- 
axis by a rows ( + a  for upward shift, and - a  for 
downward shift ). 

4.4. Row accumulation 

This refers to calculating the sum of all the ele- 
ments of  a data plane columnwise. The initial plane 
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S is split horizontally (using vertical shifting) into 
two planes X and Y, each with half the data entries 
of  S; next these planes are added using the 2-D ad- 
dition procedure. This split and add process is re- 
peated for log2n iterations, after which, the first row 
of  S holds the sums of  all the rows of  S. In other word, 
the elements of  each column are accumulated and 
stored in the first ent~ '  of  each column. 

Procedure Row-Sum(S,X,Y) 
begin 

for k =  1 to log,n do 
a:=n/2~;  

f l:=Sl-~ (n /2~) ;  
X,-- V_~(S);  
v ~/~(X): 
Y , - -V+, (S) ;  
S,-- 2-D Addition (X,Y); 

endfor 
end Procedure Row-sum 

4. 5. Column accumulation 

4.6. Matrix multiplication 

As an example o f  algorithm mapping, we present 
a parallel algorithm for matrix multiplication which 
is based on the use of  the computing substructures 
introduced above. Let X and Y be n × n  matrices 
(assuming same size for simplicity) then their prod- 
uct X × Y = Z  is an n X n  matrix whose elements are 
given by 

z,j= ~ x,kykj, i , j = l  ..... n .  (1) 
k = l  

We assume that the matrix X is stored as n ma- 
trices o f  size nXn:  X n, X"-~ .... , X ~, where each ma- 
trix X' is formed by transposing the ith row of  X and 
replicating it n times. Put differently, each column 
o f X  ~ is equal to the ith row of  X, for i =  1 .... , n. Let 
Tk be the matrix formed by the 2-D multiplication 
of  matrices X k and Y, then T~.= {U}, where t,j=xkjy . 
for i , j=  1, ..., n. Thus summing the elements of  each 
column of  Tk using the Row-Sum procedure will 
produce a matrix say Zk whose first row presents the 
kth row of  matrix Z: 

This substructure refers to the accumulation of  the 
elements of  a data plane rowwise. It is similar to the 
Row-Sum substructure, with the exception that the 
elements of  the data plane are accumulated along the 
rows. Initially, the data plane S is split vertically 
(using horizontal shifting) into two data planes X 
and Y. These planes are then added using the 2-D 
addition substructure. The same steps are repeated 
for log m iterations, after which the first column of  
S contains the accumulated columns. 

Procedure Column-Sum(S,X,Y) 
begin 

for k =  1 to log2n do 
¢x:=n/2~; 
fl: =E' , -~ (n /2k) ;  
X,-- H_~(S) ;  
H+~j(X): 
Y , - H + , ( S ) ;  
S,--2-D Addition (X,Y); 

endfor 
end Procedure Column-Sum 

Z ~ = ' ~ t ~ , ,  j = l  ..... n ,  (2) 
t = l  

where the first row of  Zk represents the kth row of  
Z and all the other rows are 0s. By repeating these 
steps for all values o f k  ( k =  1, ..., n), we produce n 
matrices Zn, Z,,_ ~ .... , Z~. The first row of  each ma- 
trix Z, represents the ith row of  the final product ma- 
trix Z. Each matrix Zk is shifted by l - k  rows down- 
ward. All the shifted matrices are then added pairwise 
to produce the final matrix Z: 

Procedure Matrix Multiply(Z,X,Y) 
begin 

fork:= l  t o n d o  
T~,-2-D Multiplication(X k, Y); 
Z~,- Row Sum(Tk);  

endfor 
for k :=  l to n do V¢I_k)(Z~.); 
for k: = 1 to n do Z , - 2 - D  Addition (Z,Z~); 

end Matrix Multiply 

The time complexity of  the algorithm is 
O(n(q log2n+q 2) ), where q is the operand length. It 
can be seen that the time complexity of  the multi- 
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plication algorithm is logarithmic in n(O(n log n ) )  
as opposed to cubic in n ( O ( n  3)) for the conven- 
tional triple loop matrix multiplication. 

5. Performance analysis 

In this section, we estimate the theoretical per- 
formance of  the optical architecture by evaluating 
several performance measures and compare them to 
the ones of  existing SIMD array processors. 

5.1. Asymptotic performance 

Hockney and Jesshope [ 14 ] have introduced two 
parameters (r~, h i / 2 )  to  give a first-order charac- 
terization for the asymptotic performance of  a par- 
allel computing system. The first parameter: r~ gives 
a quantitative measure o f  the maximum rate of  com- 
putation in units of  equivalent scalar operations per- 
formed per second. For an array processing system, 
r~ is evaluated as follows [ 14 ] 

roo=n2t .... y, (3) 

where t .... ., is the time taken to execute one opera- 
tion on all the PEs, this is usually taken as the pro- 
cessing rate, and n 2 is the total number  of  PEs. The 
half-performance length: n~/2 characterizes the 
amount  of  hardware parallelism in a computer  ar- 
chitecture. For a nonpipelined array processor, the 
factor n ~/2 is defined to be the vector length required 
to achieve half the maximum performance (r J 2 )  
[ 14]. For an array processing system, nwz is half  the 
array size nZ/2 [ 14]. 

The MPP [ 15 ] with an array of  128 X 128 PEs and 
10 MHz rate has achieved 6 × 109 8-bit operat ions/  
s. The CLIP [ 16 ] with a 96 × 96 array and a 25 ~ts 
cycle time has achieved 3 .7× 109 bit operations/s.  
The ICL DAP [17] with a 6 4 × 6 4  array and 0.2 ~ts 
cycle time, was described to achieve 108 32-bit op- 
erations/s. The Connection Machine [18] with 
65536 PEs and a 0.5 las machine cycle time can 
achieve 13 × 10 ~° bit operations/s (the CM-2 model).  
For the optical case, if we assume that the processing 
unit is formed with NOR-gate arrays [6] of  size 
1000× 1000, and 100 MHz processing rate, r~o= 10 ~4 
bit operations/s.  

5.2. Communication and I /0  capabilities 

Communicat ion plays a crucial part in determin- 
ing the overall system performance. There are many 
communicat ion metrics in the literature, we choose 
the most widely used for our purposes: 

Communication bandwidth is the maximum num- 
ber of  messages that can be simultaneously ex- 
changed in one time step. Hence the bandwidth of  
the optical system is O(n2) ,  since up to n 2 PEs can 
send and receive data at a time. The data transmis- 
sion in the MPP and the CLIP is one column at a 
time, therefore their bandwidth is O (n),  the DAP on 
the other hand, transmits data in a row-parallel fash- 
ion which amounts to the same bandwidth factor 
O ( n ) .  The Connection Machine has a maximum 
sustained communicat ion bandwidth of  O (n 2 ). 

The diameter is the maximum number  of  com- 
munication cycles (or links) needed for any two PEs 
to communicate.  For the optical case, this factor is 
1, since we allow any number  of  shifts in either di- 
rections in one cycle time. The MPP and the DAP 
are mesh-connected and therefore have a diameter 
of  2 ( n -  1 ). The CLIP has a hexagonal connectivity 
and therefore has a diameter o f  nx/2. The Connec- 
tion Machine, has a diameter of  O(log2n). 

Broadcasting is the ability to send the value in a 
certain PE to all the other PEs. The amount  of  com- 
munication cycles to achieve this is considered a 
measured of  communication performance. This value 
is O ( n )  for the DAP, MPP, and CLIP, and O(log2n) 
for the Connection Machine. As far as the optical 
system is concerned, broadcasting a value in one PE 
to all other n 2 -  1 PEs can be done in O(log2n) steps. 

In current implementations of  the MPP and the 
CLIP, I / O  is handled in column-parallel fashion 
while the DAP is row-parallel (data is loaded into 
the processing array one column or one row at a 
t ime).  By contrast with the optical system, I / O  ac- 
tivities are handled in plane-parallel manner. This 
ability gives the optical system an I / O  speedup of  n, 
for an n X n input image, over the MPP, CLIP and 
the DAP which could be a tremendous speed ad- 
vantage, considering the large potential value o f  
n (eventually ! 000). Table 1 summarizes the various 
performance measures considered above. 

35 



Volume 72, number 1.2 OPTICS COMMUNICATIONS 

Table 1. 
Performance comparison of the optical bit-plane architecture with electronic array processors 

1 July 1989 

Computing Performance metrics 
System 

Maximum Parallelism Diameter Bandwidth Broadcasting I/O Cycle time 
performance (r~) ( n ~ )  capability (las) 

Optical Architecture 1014 bit op/s 500000 1 n-" O(Iog2n) n-" 10 -2 
( 1000× 10007 PEs (potentially) 

MPP ( 128× 128) 6x  10~ 8-bit op/s 8192 2 n - 2  n O(n)  n 10-' 

DAP (64X64) 3.7X 10~ 32-bit op/s 2048 2 n - 2  n O(n)  n 2Xl0  -~ 

('LIP (96X96) 3.7X 10' bit op/s 4608 x"2n n O(n)  n 25 

Connection Machine 13X 10"~bit op/s 32768 O(Iog,n) n 2 O(Iog2n) n-' 5X10- '  
(64K PEs ) 

n 2 = the total number of PEs. (processing array size). 
r.,. = the asymptotic performance = processing array size/processing time ( Hockney and Jesshopc). 
n,, ,  =amount of hardware parallelism. It is the vector length required to achieve half the maximum performance. In case of array pro- 
cessing, half the maximum performance is achieved with half the array size (n2/2) .  

6. Conclusions 

In th i s  c o m m u n i c a t i o n ,  a para l le l  op t i ca l  c o m p u t -  

ing m o d e l  b a s e d  on  s y m b o l i c  s u b s t i t u t i o n  is i n t ro -  

d u c e d  as well  as a h i e r a r c h i c a l  m a p p i n g  t e c h n i q u e  

for  m a p p i n g  para l le l  a l g o r i t h m s  o n t o  it. Severa l  nu -  

mer i ca l  a l g o r i t h m s  were  m a p p e d  o n t o  the  a r ch i t ec -  

ture .  In i t ia l  t h e o r e t i c a l  p e r f o r m a n c e  ana lys i s  o f  the  

p r o p o s e d  s y s t e m  was c o n d u c t e d .  T h e  ana lys i s  has  

s h o w n  t h a t  the  op t i ca l  a r c h i t e c t u r e  has  a g rea t  po-  

t en t i a l  for  o u t p e r f o r m i n g  ex i s t i ng  a r r ay  p rocessors .  

H e n c e ,  it is an  a t t r a c t i v e  a l t e r n a t i v e  to c u r r e n t  c o m -  

p u t i n g  s y s t e m s  for  a p p l i c a t i o n s  t h a t  r equ i r e  process -  

ing large a m o u n t s  o f  d a t a  at  h igh - speed .  F u r t h e r -  

more .  the  c o m m u n i c a t i o n  f lex ib i l i ty  a n d  para l le l  1/ 

0 o f  the  op t i ca l  sys t em s e e m s  to be  u n m a t c h a b l e  by  

o t h e r  e l e c t r o n i c  p rocessors .  
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