Scalable optical hypercube-based interconnection
network for massively parallel computing
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Two important parameters of a network for massively parallel computers are scalability and modularity.
Scalability has two aspects: size and time (or generation). Size scalability refers to the property that
the size of the network can be increased with nominal effect on the existing configuration. Also, the
increase in size is expected to result in a linear increase in performance. Time scalability implies that the
communication capabilities of a network should be large enough to support the evolution of processing
elements through generations. A modular network enables the construction of a large network out of
many smaller ones. The lack of these two important parameters has limited the use of certain types of
interconnection networks in the area of massively parallel computers. We present a new modular optical
interconnection network, called an optical multimesh hypercube (OMMH), which is both size and time
scalable. The OMMH combines positive features of both the hypercube (small diameter, high connectiv-
ity, symmetry, simple routing, and fault tolerance) and the torus (constant node degree and size
scalability) networks. Also presented is a three-dimensional optical implementation of the OMMH
network. A basic building block of the OMMH network is a hypercube module that is constructed with
free-space optics to provide compact and high-density localized hypercube connections. The OMMH
network is then constructed by the connection of such basic building blocks with multiwavelength optical
fibers to realize torus connections. The proposed implementation methodology is intended to exploit the
advantages of both space-invariant free-space and multiwavelength fiber-based optical interconnect
technologies. The analysis of the proposed implementation shows that such a network is optically
feasible in terms of the physical size and the optical power budget.
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multiwavelength multiplexing.

1. Introduction

The quest for Tflops (1012 floating-point operations
per second) supercomputers combined with the
launching of the High Performance Computing and
Communication initiative is putting major emphasis
on exploiting massive parallelism with greater than
1000 processing elements (PE’s) networked to form
massively parallel computers (ultracomputers).l.2
A key element, and a deciding factor in terms of
performance and cost of these computers, is the
interconnection network.? The interconnection net-
work for massively parallel computers must not only
be adequate in terms of communication bandwidth,
latency, and connectivity, it must also be modular and
scalable.
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Scalability of a network consists of two aspects:
size scalability and generation scalability (or time
scalability).? Size scalability refers to the property
that the size of the network (e.g., the number of
communicating nodes) can be increased with a nomi-
nal change in the existing configuration. Also, the
increase in system size is expected to result in an
increase in performance comparable to the increasing
size. A generation-scalable network could be imple-
mented in a new technology, and the interconnection
bandwidth of the network should grow at the same
rate as processing speed and memory. Without in-
creasing interconnection bandwidth, we cannot fully
exploit the increased speed of evolutionary PE’s.
Modular networks enable the construction of a large
network out of smaller networks.

Numerous topologies have been explored for paral-
lel computers.*" However, the lack of size scalabil-
ity and modularity of some of these networks has
limited their use in massively parallel computing
systems despite their many other advantages. For
example, one of the most popular networks for paral-



lel computers is the binary n cube, also called a
hypercube. The attractiveness of the hypercube to-
pology is its small diameter, which is the maximum
number of links (or hops) a message has to travel to
reach its final destination between any two nodes.
A binary n-cube network has 2" nodes, and the
diameterisn. Each node is numbered in such a way
that there is only one binary digit difference between
any node and its n» neighbors (node degree) that are
directly connected to it. This property greatly facili-
tates the routing of messages through the network.
In addition, the regular and symmetric nature of the
network provides fault tolerance. Despite its small
diameter, high connectivity, simple routing scheme,
and fault tolerance, the hypercube topology is rarely
adopted in the most recent projects for massively
parallel computers, such as the Intel Paragon, the
Cray Research MPP Model, the Caltech Mosaic C, the
MasPar MP-1, the Tera Computer Tera Multiproces-
sor, and the Stanford Dash Multiprocessor, which are
based on the torus/mesh topology.® One major
reason is its lack of size scalability. As the dimen-
sion of the hypercube is increased by one, one addi-
tional link needs to be added to every node in the
network. In addition to the changes in the node
configuration, at least a doubling of the number of
existing nodes is required for the regular hypercube
network to expand and to remain as a hypercube.

Torus networks (henceforth, the mesh is referred
to as a torus if the mesh has wraparound connections
in the rows and columns) are easily implemented
because of the simple regular connection and the
small number of links (four) per node. Because of its
constant node degree, the torus network is highly size
scalable. With a network size of N nodes the mini-
mal incremental size is approximately N2 for a
perfectly balanced network. However, the torus net-
work also suffers from a major limitation, which is its
large diameter (N1/2 for an N-node network), along
with its limited connectivity. Despite the fact that
the mesh /torus topology has limited connectivity and
a large diameter, many recent projects for massively
parallel computers targeting Tflops use this topology
for the interconnection network.

Motivated by these limitations, we explored a novel
topology for optical interconnection networks, called
the optical multimesh hypercube (OMMH), which
combines the advantages of both the hypercube (small
diameter, high connectivity, symmetry, simple con-
trol and routing, and fault tolerance) and the mesh
(constant node degree and size scalability) topologies
yet circumvents their disadvantages (the lack of size
scalability of the hypercube and the large diameter of
the mesh /torus). The topology of the OMMH net-
work is size scalable. Time scalability is provided by
the optics-based interconnection architecture. We
developed a three-dimensional optical design method-
ology that exploits the advantage of both space-
invariant free-space and multiwavelength fiber-based
optical interconnect technologies. The proposed
implementation is also analyzed for an example
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OMMH network with a ten-cube module as a basic
building block. The analysis includes examination
of the power flow, the efficiency, and the system
volume. It is shown that a ten-cube (1024-node)
module is containable within a 25.4 mm X 25.4 mm X
203.2 mm volume with a power efficiency of 16% and
that the torus subnetwork has a power efficiency of
23.6%.

The distinctive advantages of the proposed design
methodology include the following: (1) an efficient
and scalable interconnection network, (2) better utili-
zation of the space-bandwidth product of optical
imaging systems, (3) full exploitation of the parallel-
ism of free-space optics and the high bandwidth of
fiber optics, and (4) compatibility with the emerging
two-dimensional optical logic and switching and the
optoelectronic integrated-circuit technologies.

2. Topology of the Optical Multimesh
Hypercube Network

In this section we define the structure of the OMMH.
We then compare and contrast structural properties
of the OMMH with the hypercube network.

A. Definition of the Optical Muitimesh Hypercube Network

An OMMH is characterized by a triplet (I, m, n),
where [ represents the row dimension of a torus, m
represents the column dimension of the torus, and n
represents the dimension of a binary hypercube.

An (I, m, n)-OMMH network is constructed as fol-
lows. For two nodes (i1, ji, #1) and (ig, jg, k2), where
0<i,<,0<i, <,0<j <m0<jo,<m0x<
ky < 28 and 0 < ky < 27, the following holds:

(1) There is a link {called a torus link) between
two nodes if (i) k; = %, and (ii) two components, ¢ and
j, differ by 1 in one component while the other
component is identical.

(2) There also exists a torus link for the wrap-
around connection in the row if (i) 2, = ky and (ii){; =
is, j1 = 0, jo = m — 1, or for the wraparound
connection in the column if (i) 2, = ky and (ii) j; = Jja,
iy=0,andi,=1-1.

(3) There is also a link (called a hypercube link)
between two nodes if and only if (i) i1 = iy, (ii) j1 = Jo,
and (iii) £; and %, differ by one bit position in their
binary representation (Hamming distance of 1).

Figure 1 shows a (4, 4, 3)-OMMH interconnection,
in which solid lines represent hypercube links and
dashed lines represent torus links. A (4,4, 3)-
OMMH consists of (4)(4)(2%) = 128 nodes. Filled
circles represent nodes of the OMMH network which
are, in this paper, abstractions of PE’s, which consist
of electronic processing modules for computation and
optical sources and detectors for communication.
Both ends of torus links, shown by dashed lines, are
connected for wraparound connections of the torus if
they have the same labels. The size of the OMMH
can grow without a change in the number of links per
node by expansion of the size of the torus, for
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Example of the optical multimesh hypercube network: a (4, 4, 3)-OMMH (128-node) interconnection is shown. Two links with
the same labels are connected for the wraparound connections of the torus.

Only a few addresses are shown in parentheses for clarity.

Solid lines represent hypercube connections, and dashed lines represent torus connections.

example, by insertion of three-cube modules in the
row or the column of the torus in Fig. 1. This
feature permits the OMMEH to be size scalable. More
discussion on the scalability issue follows in Subsec-
tion 3.A,

An interesting isomorphic network is shown in Fig.
2. The same network is redrawn as a 4 x 4 torus-
clustered three-cube network. It can be viewed as
eight concurrent toruses, where eight nodes having
identical torus addresses form one three-cube module.
It can also be viewed as 16 concurrent three-cube
modules in which 16 nodes having identical hyper-
cube addresses form a 4 x 4 torus. The (4, 4, 3)-
OMMH in Fig. 1 appears similar to a three-cube-
clustered 4 x 4 torus. Depending on the problem at
hand, the OMMH can be configured as torus-
clustered hypercubes or as hypercube-clustered to-
ruses.

B. Message Routing in the Optical Multimesh Hypercube

Because of the regularity of the structure, a distrib-
uted routing scheme can be implemented without
global information. Since the OMMH is a point-to-
point network, packet communication is assumed in
the message-routing scheme. For an (I, m, n)-
OMMH network, let the addresses of two arbitrary
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nodes S and T be (i, j,, ks) and (i, j,, k.), respectively,
where0 <1, <[,0<<[,0< j,<m,0<j, <m,
0 <k, <2,and0 <k, < 2*. The message-routing
scheme from S to T is that of an n-cube network, an
[ X m torus network, or a combination of the two,
depending on the relative locations of the nodes:

(1) Routing within a Hypercube. If i; = i, and
Js = Ji, then S and T are within the same hypercube.
The routing scheme for this case is exactly the same
as that of the n-cube network.

(2) Routing within a Torus. If k, = %, then S
and T are within the same torus. The routing
scheme for this case is exactly the same as that of the
[ X m torus network.?

(8) Routing through Toruses and Hypercubes. If
none of the above two cases are true, S and T share
neither a hypercube nor a torus. There are several
options available for this case. One option uses the
hypercube routing scheme until the message arrives
at the same torus at which T resides, and then it uses
the torus routing scheme for the message to arrive at
T. In another option the torus routing scheme can
first be applied to forward the message to the same
hypercube at which T resides, and then the message

can reach T with the hypercube routing scheme.
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(4, 4, 3)-OMMH interconnection network represented in an isomorphic view. Wraparound connections of the torus are omitted,

and only a few addresses are shown in parentheses for clarity. Solid lines represent hypercube connections, and dashed lines represent

torus connections.

We can also mix the hypercube and the torus routing
until the message is forwarded to the same hypercube
or to the same torus at which T resides, and then we
can forward the message to T using the hypercube or
the torus routing scheme, respectively.

C. Diameter and Link Complexity

The distance between two nodes in a network is
defined as the number of links connecting these two
nodes. The diameter of a network is defined as the
maximum of all the shortest distances between any
two nodes. The diameter of the network is of great
importance since it determines the maximum num-
ber of hops that a message may have to take. For
two extreme cases the diameter of a linear array with
N nodes is (N — 1), while that of a completely con-
nected network is unity. An ! X m torus has diam-
eter (|{/2] + |m/2]). The diameter of a hypercube
with N nodes is logy(N). Thus the diameter of an
(I, m,n)-OMMH s (|I/2] + |m /2] + n).

Link complexity or node degree is defined as the
number of links per node. The higher the link
complexity, the greater is the hardware complexity
and, consequently, the cost of the network. The
node degree of a hypercube with N nodes is logy(N)
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and that of an (I, m, n)-OMMH is (n + 4). Nisequal
to (1)(m)(2") if the hypercube and the OMMH have the
same network size. A comparison of diameters
should be accompanied by a comparison link complex-
ity because a higher connectivity resulting from a
higher link complexity is expected to lead to smaller
diameters. Figure 3(a) compares the diameters of
the hypercube and the OMMH, in which (16, 16, n)-
OMMH means the size of the torus in the OMMH is
fixed and the size of the hypercube in the OMMH is
changed to have the same network size for compari-
son purposes. Similarly, (/, m, 4)-OMMH implies the
size of the hypercube in the OMMH is fixed and that
of the torus is changed. Figure 3(b) compares link
complexities, or node degrees, of the hypercube and
those of the OMMH. Figure 3(c) depicts the growth
of the total number of links in the network as the
network size increases. For a network size of 106
nodes the hypercube network contains ~10.5 x 106
links, the (I, m, 4)-OMMH has ~4.2 x 10¢ links, and
the (16, 16, n)-OMMH has approximately ~8.4 x 10°
links. Since one link implies one physical path,
electrical or optical, between two nodes, the OMMH
network is cost efficient compared with the hypercube
network in terms of hardware requirements.
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Fig. 3. Comparison of (a) diameter, (b) link complexity, (c) total number of links, and (d) normalized average message distance of the
hypercube and the OMMH when the two networks have the same number of nodes.

D. Fault Tolerance of the Optical Multimesh
Hypercube Network

As the number of components in a system grows, the
probability of the existence of faulty components
increases. For a large-scale system we cannot al-
ways expect that all components in such a system are
free from any failures. However, we need to expect
such a system to continue to operate correctly in the
presence of a reasonable number of failures.

Because of the concurrent presence of toruses and
hypercubes in the OMMEH network, rerouting of
messages in the presence of a single faulty link or a
single faulty node can easily be done with little
modification of existing fault-free routing algorithms.
In the OMMH network any single faulty link or any
single faulty node can be bypassed by only two
additional hops as long as this particular node is not
involved in the communication; namely, the node is
neither the source nor the destination for any message.
Briefly, this can be proven as follows. When the
torus routing scheme is being applied in the presence
of a faulty link or node, one additional hop is needed
to forward the message to a neighboring torus subnet-
work through a hypercube link [ such neighboring
toruses exist in an (I, m, n)-OMMH], and another hop
is needed to return the message to the original torus
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subnetwork. Similarly, when the hypercube routing
scheme is being applied, a message can detour a faulty
link or node with two additional hops, one to forward
the message to a neighboring hypercube subnetwork
and another to return the message to the original
hypercube subnetwork.

3. Modular and Scalable Optical Interconnection
Architecture of the Optical Multimesh Hypercube
Network and Its Optical Implementation

In this section we discuss modularity and scalability
issues of the OMMH interconnection architecture,
and we present an optical implementation of the
OMMH network. Then we discuss the rationale and
the performance of the proposed OMMH implementa-
tion.

A. Scalable Interconnection Architecture of the Optical
Multimesh Hypercube Network

1. Size Scalability of the Optical Multimesh
Hypercube Network

Size-scalable networks have the property that the size
of the system (e.g., the number of communicating
nodes) can be increased with nominal changes in the
existing configuration. Also, the increase in system



size is expected to result in an increase in perfor-
mance to the extent of the increase in size. As the
dimension of the hypercube is increased by one, one
more link needs to be added to every node in the
network. In addition to the changesin the node con-
figuration, at least a doubling of the size is required
for the hypercube network to expand. This implies
that the hypercube does not permit an incremental
expansion of small sizes. Thus the hypercube net-
work is not scalable according to the above definition.
We should note that the hypercube network may be
scalable at a greater cost. Moreover, it is not modu-
lar.® The lack of size scalability and modularity have
limited the application of the hypercube topology to
large-scale massively parallel systems.

As can be seen in Fig. 3(b), the OMMH with a
constant cube as a basic building block [e.g., an
(I, m, 4-OMMH] has a constant node degree, which
means that the size of the OMMH is ready to be scaled
up by expansion of the size of the torus without the
link complexity of existing nodes being affected; as is
the case in expansion of the size of the hypercube
network. However, we cannot just add one node to
the OMMH. For an (I, m, n)-OMMH we need to add
at least ()(2") nodes (if /| < m)when the torus subnet-
work needs to balanced.

An OMMH network is constructed from simple
building blocks (hypercubes) in a modular and incre-
mental fashion. These building blocks, once con-
structed, are left undisturbed when the network
grows in size. The OMMH can be viewed as a
two-level interconnection network: high-density, lo-
cal connections for hypercube links (within a basic
module) and high-bit-rate, low-density, long connec-
tions for the torus links connecting the basic building
blocks. Thus one can increase the size of the OMMH
by adding hypercube modules, which provides modu-
larity and size scalability.

2. Generation Scalability of the Optical Multimesh
Hypercube Network

Generation-scalable architectures are designed with
consideration of what the future implementations
may be. Such architectures will survive throughout
generations. A generation-scalable network can be
implemented in a new technology, and the intercon-
nection bandwidth of the network should grow at the
same rate as processing speed and memory. With-
out increasing interconnection bandwidth, we cannot
fully exploit the increased speed of evolutionary pro-
cessing elements. Generation scalability in the
OMMH interconnection architecture is provided by
the use of high-bandwidth optics, which would match
communications bandwidth requirements of future
processing elements.

B. Optical Implementation of the Optical Multimesh
Hypercube Network

In this subsection we present an optical implementa-
tion of the hypercube networks for constructing basic
building blocks. Then we show how to design torus
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links to connect such hypercube modules to construct
the OMMH network.

1. Optical Implementation of Space-Invariant
Hypercubes Using Binary Phase Gratings

We discuss an optical implementation of the three-
dimensional space-invariant hypercube network; the
design methodology is proposed in Ref. 10. The
design methodology is based on an observation that
nodes in an interconnection network can be parti-
tioned into two sets of nodes such that any two nodes
in a set do not have a direct link (except for completely
connected networks). This is a well-known problem
of bipartitioning a graph if the interconnection net-
work is represented as a graph. For a binary n-cube
network, nodes whose addresses differ by more than a
Hamming distance of 1 can be in the same partition,
since no link exists between two nodes if their Ham-
ming distance is greater than 1. Besides bipartition-
ing the graph, we arrange the nodes in each partition
onto the plane such that interconnection between two
planes becomes space invariant. Two partitions of
nodes are called Plane; and Planep, respectively, in
Ref. 10. The methodology uses a free-space optical
multiple imaging technique to replicate and to spa-
tially shift the image of one partition of nodes.
Multiple images are then simultaneously incident
upon the other partition. The locations of multiple
image spots on the receiving partition are determined
by the required connection patterns.1?

There is a wide variety of optical means to generate
multiple images. These include phase gratings,!1-12
beam splitters,!> multiple split lenses,'* lenslet ar-
rays,’® arrays of mirrors,'® and holographic tech-
niques.!” A hypercube-based architecture for cellu-
lar image processing has been demonstrated with
holograms,’8 and a new concept of grid patterns for
the layout of an optoelectronic integrated-circuit chip
has been proposed.1?

In the following we discuss the design of binary
phase gratings (BPG’s) for the five-cube implementa-
tion as an example. Figure 4 describes a hardware
arrangement of optical components for a space-
invariant five-cube network. For clarity, only a two-
dimensional view is shown. A BPG is added at the
pupil plane between two imaging lenses to provide
necessary beam-steering operations. This type of

Space-invariant % Ba
binary ?r}'\ase +
grating

Fig. 4. Space-invariant optical implementation of a five-cube
network with a binary phase grating: L1, L2, lenses.
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arrangement was first proposed in Ref. 20. We
extended it here for the implementation of space-
invariant hypercube networks. Since the intercon-
nection patterns are space invariant, any beam-
steering operation performed on one of the beams
must be performed on all of the beams that pass
through the BPG. The beam-steering operation of
the BPG is dictated by the grating equation shown in
Eq. (1), which describes the relationships among the
angle of the incident beam 6;, the period of the grating
p, the wavelength of the light \, the grating order m,
and the angle of the mth order’s diffracted beam 6, :

p(sin 8 — sin 6;) = mA. (1)

Assume that the size of a node in one dimension is d
and that the focal length of each lensisf. Let Ay, be
the distance of an image spot in Planep from the
optical axis made by the mth-order diffracted beam
from PEO. Then,

hpgo = f(tan 84 ). (2)

Given that 0; = tan~1(1.5d/f), Eq. (2) can be rewrit-

ten as
w2} o

We assume that the structure of the grating is
designed such that the power of the incident beam is
equally distributed into the zeroth, the positive and
negative first, and the positive and negative third
orders of diffracted beams, and others are suppressed.
We can have different amounts of optical power from
the original beam routed into the different orders by
changing the periodic structure of the grating. To
have different angular spacings, we should change
the period of the grating.l” Since PEO is supposed to
be connected with PE1, PE4, and PE16 for the
five-cube network, the following conditions should be
satisfied:

mA
hg = ftan(sin‘1 s + sin

Ky = 1.5d,

htk, = 0.5d,

ks, = —1.5d,

hiao > 2.0d,

33, > 2.0d. (4)

Note that the conditions for hpp, and hz3, make
negative-first- and negative-third-order diffracted
beams fall outside Planep to avoid unwanted condi-
tions.

Similarly, the beam from PE5 generates multiple
spots in Planep, for which the distances from the

optical axis are
=l 2]}
> sin|tan 7

Mg = ftan(sin‘1
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To make connections from PE5 to PE1, PE4, and
PE21, we need the following set of conditions;

ROgs = 0.5d,

hiks = —0.5d,

hois = 1.5d,

ki < —2.0d,

hpss > 2.0d. (6)

Note that conditions for h}g; and kS, make positive-
third and negative-third diffracted beams fall outside
Planep. Since PEO and PES5 are placed symmetri-
cally with respect to the optical axis, with PE17 and
PE20, we can determine the period of the grating p to
provide the required connections for the five-cube
network by solving relations (4) and (6) given the size
of a node, the focal length of the lens, and the
wavelength of the light source. However, we cannot
have an exact solution since image spots generated by
both PEO and PE5 cannot be placed on uniform
spacings in Planep. An approximate solution could
be determined by a computer program that optimizes
conditions in relations (4) and (6). By optimization
we mean minimization of errors in each condition.
For example, given that the node size in one dimen-
sion is 5 mm, the wavelength of the light source 960
nm, and the focal length of the lens 50.8 mm, then the
optimum period of the grating is computed to be 19.6
pm, which causes maximum misalignment of 9.0 pm
at PE21 from the PE5 connection. The feature size
of a node for the construction of massively parallel
computers will depend mainly on the area required
for PE’s and memories for a single node, not on the
size of the light source and detector. With wafer-
scale integration the size of a node would be small
enough (assuming fine-grain or medium-grain paral-
lelism) so as not to make imaging lenses impractically
large.?!

The size of a basic n-cube module that can be
implemented is determined primarily by the number
of fan-outs that can be managed by the BPG since an
n-cube implementation requires 2n — 1 fan-outs.
The BPG must be able to generate 2n ~ 1 beams of
equal power. We note that a hypercube of relatively
small size could be implemented easily with electron-
ics if the bandwidth requirement were not large, but
as the network size grew, optics would be more
advantageous than electronics both in design complex-
ity and bandwidth.

2. Design of Torus Links to Connect
Hypercube Modules

An (I, m, n)-OMMH can be constructed as follows:

(1) I x m n-cube modules, as described in Subsec-
tion 3.B.1, are placed in an ! X m matrix form.

(2) I x m nodes, each of which is from the same
location of the n-cube modules, are connected to form

a torus of dimensions { X m (A node consists of an
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Fig. 5. Two-dimensional side view of a five-cube module to
interface with torus links for the construction of the (I, m, 5)-
OMMH network. (See Subsection 3.B.2 for a description of the
components.)

n-cube module with a torus link interface. An ex-
‘ample of a five-cube module with a torus interface is
shown in Figs. 5 and 6.)

(3) Step 2 is repeated until every node is con-
nected, resulting in 2" toruses of size [ X m.

Legend:
B wux
2 Datector
z z
§z X -3 X D QBS with a source
2 H 2 ~=—= 4~channel wavelength
s § s 3 multiplexed fiber (arrow
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Fig. 6. Two-dimensional top view of the five-cube module shown
in Fig. 5.
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Since two adjacent n-cube modules are connected
by 27 torus links, the number of optical fibers re-
quired grows exponentially as n increases. A pos-
sible solution for reducing the number of optical
fibers required is the use of a wavelength-multiplex-
ing technique. However, a straightforward use of
the wavelength multiplexing also requires a prohibi-
tively large number of different wavelengths. For
example, to connect two ten-cube modules, we need
210 = 1024 different wavelengths. A wavelength-
node assignment technique?? can alleviate this prob-
lem as follows.

Referring to Ref. 10, we can see that an n-cube
layout (Plane; or Planeg) consists of 2l»-1/2 non-
empty rows and 2/»-1/21 nonempty columns. For
Plane; and Planep, we assign the following wave-
lengths to the nodes in the first row: A, \p, ...,
}\2[(71—1)/2]- Then we assign Aoy oo v }\2[(”_1)/2], )\1 as
wavelengths to the nodes in the seconds row. In
general, wavelength assignment in a row is achieved
by rotation of the wavelength assignment of the
previous row by one column. This wavelength as-
signment results in no two nodes in the same row or
column having an identical wavelength. Figure 7
shows a wavelength assignment for a five-cube mod-
ule. We then use a 2/®»~1/2l.channel wavelength-
multiplexed fiber to connect two rows in the adjacent
two n-cube modules. Similarly, a 2l*~1/2.channel
fiber is used to connect two columns in the adjacent
two n-cube modules. Thus an implementation of an
(I, m, n)-OMMH with the above wavelength-assign-
ment method requires no more than 2i:-1)/2] different
wavelengths. In addition, no more than 2(-1/2]
optical fibers are required for the connections be-
tween any two adjacent n-cube modules.

Now we consider an optical implementation of the
(£, m, n)-OMMH network. We assume the availabil-
ity of two optical components: A quadrant beam
splitter (@BS), which splits a single beams into four
beams, and an i-channel wavelength multiplexer
(WMUZX), which multiplexes beams with i different
wavelengths into a single beam (and also demulti-
plexes since it is bidirectional). The realization of
these two components with current technology is
discussed in detail in Subsection 3.B.3. Figures 5
and 6 shows an example of a five-cube basic module

Plane,
Az | Ag
A2 | Aa

M| e

Az | Az | Aa | M

Fig. 7. Wavelength assignment for a five-cube module. Wave-
lengths are assigned such that no two nodes in the same row or
column have an identical wavelength.
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construction, including the torus link interface. We
assume that each node has two light sources; one
source, S;, illuminates the BPG to generate the
required hypercube links, and the second source, S,
is coupled with an optical fiber for the torus links.
The number of detectors per node is dependent on the
incoming channel distinction technique.2? If we use
the space-division multiplexing technique, we need
four detectors per node for the torus connection and
27 detectors per node for the n-cube connection (the
number of detectors in the n-cube module can be
reduced greatly if a channel-encoding technique is
used.2324¢ A QBS is attached to every S, to provide
the four fan-outs, Sy, Sy, S:,, and S;,, (north, south,
east, and west). A WMUZX is located at both ends of
each row and each column. Let each WMUX at the
right end of a row be WMUX, each WMUZX at the left
end of a row be WMUZXy, each WMUX at the top of a
column be WMUXy, and each WMUX at the bottom
of a column be WMUXg. In a given row a WMUXg
multiplexes light from the S, sources of that row into
a single fiber, which is then connected to a WMUXy in
the neighboring n-cube module. Similarly, S, s, S,
and S, s sources are multiplexed by WMUXy,
WMUXg, and WMUXy, respectively. In the receiv-
ing module, these signals are demultiplexed by the
WMUX and routed to the corresponding nodes.
Figure 5 illustrates a side view of a five-cube module
with a torus link interface. For clarity, only the
two-dimensional view is shown, and thus only two
fan-outs by a QBS is given. Figure 6 shows the
corresponding top view of the module.

3. Optical Hardware Required for Torus Links

In this subsection we discuss the functionality and
the limits of two optical components used in the
implementation of torus links.

Quadrant Beam Splitter. The function of the
QBS is to split one beam into four beams. An optical
arrangement of the QBS that uses graded-index
(GRIN) lenses? is illustrated in Fig. 8(a). Four
small GRIN lenses are placed on the end facet of the
large GRIN lens. The large lens is used to collimate
a beam from a single trunk fiber, and the aperture of
the collimated beam is divided into four by the
smaller lenses. The small lenses then focus the
beams onto fibers. Beam combination or merging is
performed, but in the opposite direction. Figure 8(b)
illustrates the geometry of the QBS with GRIN lenses
for the purpose of calculating power loss occurring at
the connection between the large GRIN lens and the
small GRIN lenses. Since four small GRIN lenses do
not cover the entire end-facet area of the large GRIN
lens, some portion of the beam aperture from the
large GRIN lens cannot be captured by four small
GRIN lenses, resulting in power loss. Suppose that
the radius of a small lens is 7. The smallest possible
radius of the large lens that can cover four small
lenses is then r + y2r. Thus 4mr2/[w(1 + 2)%?] =
68.6% of the end-facet area of the large GRIN lens is
covered by the four small lenses. Therefore approxi-

mately 31.4% of power is lost from the large GRIN
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Large GRIN lens
Small GRIN [enses

Optlial fiber

Optigal fiber

Ray path

Large GRIN lens

small GRIN lens

(b)
Fig.8. (a)Quadrant beam splitter with GRIN lenses, (b) geometry
of the quadrant beam splitter.

lens to the four small lenses during the beam-
splitting process.

A more power-efficient (less than 20% power loss)
QBS has been reported in Ref. 26 with substrate-
mode holograms to reduce mechanical alignment and
chromatic sensitivity. The QBS design with sub-
strate-mode holograms is better than the design with
GRIN lenses in terms of power efficiency, feature size,
alignment, and fiber coupling efficiency. However,
substrate-mode multiplexed holograms for the QBS’s
are not commercially available at this time.

Wavelength Multiplexer. A wavelength multi-
plexer and demultiplexer (WMUX) with a GRIN lens
and ablazed grating is discussed in Ref. 27. WMUX’s
of this type permit more of the total bandwidth of the
optical fiber to be used, and more than ten channels
are currently available. Typical values of the inser-
tion loss and the cross talk in available WMUX’s are
generally 1 to 2 dB and less than —30 dB, respectively.
Since an (I, m, n) OMMH requires 2/#-1/2l.channel
WMUX’s, with eight-channel WMUX’s, it is possible
to implement any size of OMMH network ifn < 7.

4. Rationale for the Two-Level Design Approach

As discussed in Subsection 3.B.3, the optical imple-
mentation of the OMMH network consists of two
levels: free-space space-invariant optics for the con-
struction of basic building blocks and multiwave-
length fibers for the torus links. The rationale for
the two-level design approach is as follows: The use
of space-invariant free-space optics would result in
compact and simple building blocks that could be
easily reproduced.?®2®2 However, it would not be
easy to implement scalablie optical interconnects with
totally space-invariant optics only, since a single
space-invariant optical component such as a holo-
gram is used to image multiple nodes for totally
space-invariant interconnects. Thus it would be neces-
sary to redesign the component in order to increase

the number of nodes. However, since the minimum



incremental size of the OMMH is one hypercube
module (a basic building block), the use of space-
invariant optics within the basic building block would
not limit the scalability of the OMMH. We use
multiwavelength fiber optics to connect the basic
building blocks because fiber optics would provide
affordable scalable interconnects and the wavelength
multiplexing technique would make a better utiliza-
tion of the transmission capacity of an optical fiber.29-52
The breakdown of functional requirements for the
OMMH network is consistent with the advantages of
free-space and optical fiber technologies.

5. Evaluation of Optical Multimesh Hypercube
Implementation

To demonstrate the feasibility of the OMMH imple-
mentation, we performed an evaluation of the power
efficiency and system volume with the proposed de-
sign based on practical component sizes. The design
consists of ten-cube modules with 25.4-mm-diameter
lenses, each with a focal length of 50.8 mm. A
detector diameter of 50 pm was calculated to provide
the connection density to produce a ten-cube module
while permitting space-division techniques to be incor-
porated to avoid signal overlap.

With this system design the system volume of the
hypercube module is 25.4 mm X 25.4 mm X 203.2
mm. The efficiency of the hypercube was calculated
to be approximately 16%. This efficiency is due
mostly to the phase hologram (which is theoretically
33% of maximum) and to the unwanted fan-out
beams that result from the space-invariant nature of
the design. The unwanted fan-out contributes an
efficiency my, given by

n
Tlh_2n_l’ (7)

where n is the hypercube dimension. For the ten-
cube module this is 53%.

As for the OMMH torus subnetwork, a power
analysis of the fiber-optic system was performed.
Figure 9 shows a single unidirectional link of the
mesh. For this link a —1-dB loss occurs from the
insertion of the laser signal into the fiber. The QBS
suffers a —0.97-dB loss, while each WMUZX loses —1
dB of power (this calculation is for total system
efficiency rather than per channel power flow, so the
QBS loss does not include fan-out). Furthermore,
the fiber is assumed to be at most 1 m in length, and a
mean operating wavelength of 960 nm is assumed for
the loss calculation. At this wavelength the fiber has
an attenuation of —3.5 dB/km. Thus the fiber loss
for the system is —0.0035 dB. Furthermore, the
detector loss is —1 dB. Connection losses in the
system were calculated based on reflection at the fiber
interface. For the QBS each connection suffers a
—0.45 dB loss. As for the WMUX’s, an index-
matching oil was assumed to be used between the
fiber and the GRIN lens of the WMUX to ease the
index transition. With this setup the connection
losses around the WMUX’s are —0.1 dB each. The
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Fig.9. Model for the optical power budget calculation of the torus
subnetwork in the OMMH network.

final result is a total of —6.27 dB of system losses.
This is equivalent to a system efficiency of 23.6%.

To gain a sense of the bandwidth of the proposed
implementation, note that a leading-edge vertical-
cavity surface-emitting laser source is capable of
producing 6.5 Gbits/s with an output power of 2.2
mW.33  When used with this system, a detector must
have a sensitivity of 0.13 mW for the same bandwidth.
This sensitivity can be reached with a detector having
a bit error rate of 101734

4, Conclusions

Scalable networks and architectures are becoming
more and more desirable for massively parallel com-
puters since they can grow in size without major
changes of the existing system configuration (size
scalability), and they are also able to employ new
evolving technologies (generation scalability). Infact,
scalable network topologies are becoming the pre-
ferred choice for the computer industry despite their
inherently limited topological characteristics such as
low connectivity, large diameters, long average dis-
tances, and lack of fault tolerance. For example,
many recent projects for the development of ultracom-
puters (Intel Paragon, Cray Research MPP Model,
Caltech Mosaic C, MasPar MP-1, Kendall Square
Research KSR-1, Stanford Dash Multiprocessor, Tera
Computer Tera Multiprocessor, and Thinking Ma-
chine Corporation CM-5) are based on the scalable
topologies such as the mesh/torus, ring, or tree
topologies. Interconnection networks that are not
only scalable but also possess good topological charac-
teristics such as small diameter, high connectivity,
constant node degree, simple routing scheme, and
fault tolerance would greatly enhance the perfor-
mance of massively parallel computers.

We have presented in this paper a new interconnec-
tion network called the optical multimesh hypercube
(OMMH) for massively parallel computers. The dis-
tinctive features of the OMMH network are its scal-
ability, both in size and generation, and its modular-
ity while retaining positive features of both the
hypercube (high connectivity, small diameter, simple
message routing, and fault tolerance) and the mesh
(constant node degree and scalability) topologies.

7597



We have also proposed an optical interconnection
architecture of the OMMH and its three-dimensional
implementation. The proposed implementation is
divided into two levels: space-invariant free-space
optical interconnects for localized high-density hyper-
cube modules and high-bandwidth multiwavelength
optical fiber links for global low-density torus connec-
tions. This breakdown of functional requirements
for the OMMH implementation is intended to exploit
fully the advantages of free-space space-invariant
optics (parallelism, simple and compact design, high
connectivity, and cost efficiency) as well as wavelength-
multiplexed fiber-based optics (full utilization of trans-
mission bandwidth and scalability). In addition, the
breakdown is intended to provide modularity and
scalability both in size and generation. The two-
level design methodology enables the construction of
the OMMH network in a modular, incremental fash-
ion (size scalability); the use of high-bandwidth wave-
length-multiplexed optics in the OMMH can satisfy
communication bandwidth requirements of current
or near-future processing elements (generation scal-
ability). We also have analyzed the proposed imple-
mentation. The implementation demonstrates good
feasibility by showing a reasonable optical power
efficiency and a volume size capable for inclusion
within the case of a massively parallel computer.
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the University of Arizona, for his help in analyzing
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