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It is shown that by taking advantage of the superposition
property of optical signals, one can further improve the
performance of optical symbolic substitution processors.

There are many applications for which current achievable
performance is much slower than that needed. These in-
clude signal and image processing, computer vision, and
artificial intelligence. Von Neumann models of computa-
tion cannot achieve (at an acceptable cost) the computation-
al rates equivalent to billions of operations per second that
will be required for these applications. These escalating
demands for processing speed and throughput can only be
achieved by extensive use of parallelism and innovative com-
puter architectures and technologies.

Optical technology is capable of providing the high degree
of parallelism/connectivity and high temporal/spatial band-
width required for future parallel processing systems.! Ma-
jor research efforts are being made recently both for analog
as well as digital optical computing. As a result, several
optical computing techniques have emerged, one of which is
symbolic substitution logic (SSL).2 This Letter addresses
the impact of data encoding on the performance of optical
SSL computing systems and shows how the system through-
put can be improved by exploiting the superposition proper-
ty of optical signals.

Symbolic substitution logic3 is a pattern transformation
design technique for performing digital logic optically. It
uses both the temporal bandwidth and high connectivity of
optics for constructing parallel optical computing systems.
In this method, data are encoded as spatial patterns, and
operators are seen as pattern transformation rules. In its
operation, SSL consists of two pattern processing steps.
The first step is a recognition phase whereby all the occur-
rences of a search pattern are simultaneously searched in the
input plane. This is followed by a substitution phase where-
by a different pattern is substituted in all the locations where
the search pattern is found. SSL has been applied to a wide
range of applications including digital logic and arithmetic
operations,’5 signal and image processing,%’ symbolic com-
puting,39 massively parallel computing,'® implementation of
artificial intelligence languages such as PROLOG,!! and im-
plementation of optical random access memory.!?

In all the implementations that have been reported for
SSL thus far, the input operands are assumed to be placed
vertically on top of each other so that the operands occupy
distinct locations on the input plane. There are several

optical means of achieving this, one of which is to interleave
the individual 2-D input images along the Y-axis with the net
result of interleaving the rows of 2-D input images. The
interleaved image constitutes the actual input to the SSL
processor whose substitution rules were derived under this
assumption. Thus, with an input image (the interleaved
image) of size N X N, one can perform N/m X N/d d-bit
operands per processing cycle p, assuming that each bit of
the operands is represented by a single pixel of the input
image. A processing cycle p is defined to be the execution
time required for the recognition and the substitution phases
of SSL under parallel or multirule implementation, d is the
precision of the operands, and m is the number of operands
required per operation (e.g., m = 1 for aunary operation such
as a logical NOT, 2 for a binary operation like a logical AND,
and 3 for a ternary operation like full addition). Thus the
system throughput, the number of operations per unit time,
is given by
NZ
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where T represents the total processing time required to
compute an m d-bit operand operation.

From Eq. (1), it can be seen that the system throughput is
reduced by a factor of m due to the data encoding scheme.
This is not an inherent flaw of SSL. In fact, the throughput
of a SSL processor can be improved by taking advantage of
the superposition property of optical signals. This unique
feature of optics enables many optical signals carrying differ-
ent information to pass simultaneously through the same
location in space without mutual interference or crosstalk.
Therefore, there is no need for the operands (in case of a
multioperand operation) to occupy distinct locations on the
inputimage. The lack of superposition property of electron-
ic signals places a fundamental design constraint on elec-
tronic systems to carry information on separate wires (which
translates into separate physical locations on the chip, wafer,
or board). Optical computing systems, having the superpo-
sition property, should not inherit this limitation.

The following example shows how to take advantage of the
superposition property to increase the throughput of an
optical SSL binary adder. The input patterns for a two
operand binary addition are (0,0), (0,1), (1,0), and (1,1).
Using the superimposition of the inputs, these patterns can
be reduced to three patterns: (0); [(0,1) or (1,0)]; and (1).
With these new input patterns, the new substitution rules for
addition are derived in Fig. 1. Using positional coding, we
can encode the binary values 0 and 1 as shown in Fig. 2(a),
where values of 1 correspond to a bright-dark pattern and a
value of 0 corresponds to a dark-bright pattern. The new
substitution rules for addition are shown in Fig. 2(b). Note
that, using the superimposition of inputs, the number of
substitution rules for the binary addition is reduced to three.

Toillustrate these rules let us consider the addition of 1011
and 0010. The input image which comprises the superimpo-

d-bit operations/s, (1)
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Fig.1. New symbolicsubstitution rules for optical binary addition.
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(a) Dual-rail coding of values 0 and 1 (from ref.3).
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(b) New optical substitution rules for binary addition.

Fig. 2. Optical encoding of the binary values 0 and 1 and the new
substitution rules for addition.

sition of the two optically encoded operands is shown in Fig.
3(a). The substitution rules of Fig. 2(b) are simultaneously
applied to the input image for four iterations. In the general
case of d-bit operand addition, d iterations are required.
After d iterations, the substitution rule of Fig. 3(c) is applied
to the output image resulting in the final output shown in
Fig. 3(d). This last substitution rule is required to distin-
guish the 0’s and 1’s in the final sum vector.

Now let us see the impact of the new addition scheme on
the throughput. Using a previous optical addition scheme,3
the total time for d-bit binary addition is T' = d X p, and the
number of additions that can be computed during this time is
N/4 X N/d for an N X N input image. The factor of 4 in the
denominator is introduced by the encoding scheme (separate
channels for the two operands, and each operand bit requires
2 pixels). Therefore, the throughput is

N_N
17d__ N
dXp 4xXd’Xp

w= d-bit additions/s. 2)

Using the new addition scheme and the same size input
image, the addition time is 7' = (d + 1) X p, and the number
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(a) Input image: superimposition of the
optically coded input operands.
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(b) Output image after applying the new
substitution rules of Fig, 1, for four iterations.
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(c) Substitution rule 4 required for distinguishing
the Os and 1s in the final output.
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(d) The final sum vector after applying
substitution rule 4 to the image in (b).

Fig. 3. Example illustrating use of the new substitution rules for
optical binary addition.

of additions that can be computed during this time is N/2 X
N/d. Therefore, the new throughput is

N?

w, = m d-bit additions/s. (3

The throughput improvement factor is then

W, _ d
R T A “)
or
F=2Xkwith09<k<1. (5)

Thus, for a 1000 X 1000 image size, d = 82 bitsand p = 1 us, w
= 244 X 106 32-bit additions per second, and the new
throughput w, = 474 X 10° 32-bit additions per second. In
practice, F would be equal to 2 for the addition of two
numbers because the postprocessing step required by the
new scheme for distinguishing 0’s and 1’s in the final output
is matched by the extra preprocessing step required by the
old scheme for optically interleaving the input. Recall that,
in the conventional optical addition scheme,? the individual
input images have to be interleaved before the addition
process. Inthe general case of multioperand operations, the
improvement factor F is linearly proportional to the number
of operands m required per operation. Thus

F=mXkwithm=2and09<k<Ll (6)

This letter stresses the fact that optical computing sys-
tems should be designed to take advantage of the unique
features of optics and must not be constrained by the limita-
tions of electronic systems. It has been shown that the
noninterference nature of optical signals can be exploited to
improve the performance of optical symbolic substitution
processors. By simply modifying the data encoding scheme



to take advantage of the superposition property, an increase
in the system throughput can be observed.
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their constructive suggestions.

References

1. A. A. Sawchuk and T. C. Stand, “Digital Optical Computing,”
Proc. IEEE 72, 758-779 (1984).

2. A.Huang, “Parallel Algorithms for Optical Digital Computers,”
in Proceedings, IEEE Tenth International Optical Computing
Conference (1983), pp. 13-17.

3. K.-H. Brenner, A. Huang, and N. Streibl, “Digital Optical Com-
puting with Symbolic Substitution,” Appl. Opt. 25, 3054-3060
(1986).

4. Y. Li and G. Eichmann, “Conditional Symbolic Modified
Signed-Digit Arithmetic Using Optical Content-Addressable
Memory Logic Elements,” Appl. Opt. 26, 2328 (1987).

5. K. Hwang and A. Louri, “Optical Multiplication and Division
Using Modified Signed-Digit Symbolic Substitution,” Opt. Eng.
28, 364373 (1989).

6. S. D. Goodman and W. T. Rhodes, “Symbolic Substitution
Applications to Image Processing,” Appl. Opt. 27, 1708-1714
(1988).

7. A.K. Cherriand M. A. Karim, “Uses of Optical Symbolic Substi-
tution in Image Proessing: Median Filters,” in Technical Di-
gest, Topical Meeting on Optical Computing (Optical Society
of America, Washington, DC, 1989), vol. 9, pp. 100-103.

8. R. A. Schmidt and W. T. Cathey, “Optical Implementations of
Mathematical Resolution,” Appl. Opt. 26, 18521858 (1987).

9. D.P.Casasent and E. C. Botha, “Mulifunctional Optical Proces-
sor Based on Symbolic Substitution,” Opt. Eng. 28, 425-433
(1989).

10. A. Louri, “A Parallel Architecture and Algorithms for Optical
Computing,” Opt. Commun. 72, 27-37 (1989).

11. A.D.McAulay, “Optical Prolog Computer Using Symbolic Sub-
stitution,” Proc. Soc. Photo-Opt. Instrum. Eng. 881, 223-229
(1988).

12. M. J. Murdocca, “Design of a Symbolic Substitution-Based
Optical Random Access Memory,” in Technical Digest, Topical
Meeting on Optical Computing (Optical Society of America,
Washington, DC, 1989) Vol. 9, pp. 92-95.

New technique of arithmetic operation using
the positional residue system

S. Mukhopadhyay, A. Basuray, and A. K. Datta

Calcutta University, Department of Applied Physics, 92
Acharya Prafulla Chandra Road, Calcutta 700 009, India.
Received 16 August 1988.
0003-6935/90/202981-03$02.00/0.

© 1990 Optical Society of America.

A simplified arithmetic digitwise positional operation is
proposed that uses only moduli 2 and 5 of the residue
number system.

For optical parallel processing and computing, many tech-
niques of coding, masking, and decoding have been proposed
by many workers to avoid the question of carry and borrow
during arithmetic operations.'-> One must realize that once
the problem of carry-free arithmetical operations is solved,
the parallel transmission of light can be handled most effi-
ciently by optical fibers. In this connection the importance
of the residue number system is well established, since the
arithmetic operations can be performed without using the
carry or borrow. The residue number system decomposes a
calculation into a few subcalculations of less complexity, and
hence arithmetic manipulations become much easier.5-®
Huang et al.® suggested a method of spatial permutation,
first by converting the decimal numbers to residues and then
by conducting arithmetic operations with help of maps.
There are many technological options for the physical imple-
mentation of such maps.?

The residue number system works basically on the as-
sumptions of a few prime moduli by which the decimal
numbers are converted to residues. The mazimum decimal
number that can be handled by a particular residue system is
guided by the product of the assumed prime moduli. In
other words, we may deal with any integer number lying
between 0 and M with the help of moduli m;(i = 1 — K),
where M is given by

i)

Evidently, the maximum integer number is limited by the
numbers of moduli used. As an example, we can handle any
decimal number up to 1259 if we assume the moduli are 4, 5,
7,and 9. An increase in the number of moduli to accommo-
date a large decimal number will increase the system com-
plexity, and the advantage of the residue system is lost.

However, the operations of decimal numbers of any mag-
nitude can be processed by using only two relatively prime
moduli 2 and 5.1% Since the LCM of 2 and 5 is 10, any
number differing by a multiple of 10 can be represented by
moduli2and 5. A decimal adder based on the moduli 2and 5.
has been implemented, although it suffered primarily from
the difficulties associated with decimal carry.!! The prob-
lem has been solved by using a separate carry generator
initiated by a look-up table.

In the proposed scheme we introduce a digitwise positional
operation of a residue system with respect to moduli 2 and 5,
which does not generate carry during addition. The posi-
tional residue system differs from the conventional residue
technique in the methodology where the residues and quo-
tients of each digit of the decimal number are recorded with
respect to the moduli 2 and 5. This is in contrast to the
conventional technique where the residue of the complete
decimal number is recorded with respect to the assumed
moduli. Furthermore, the conversions of decimal number to
residue and vice versa are carried out digitwise instead of
accommodating the whole decimal number, and hence the
method is designated as a positional residue system.

The residue R,, for a particular modulus m of any decimal
number x = X, %n-1, - . - /X0, can be written as

(%)m =R (0]

where n denotes the position of the digit.

However, in the positional residue system the residues of
digits at all positions for a particular modulus m are ex-
pressed and given by

(x>m_u = (%) m{%pat)ms + + + o{X0) e (2)
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