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Sorting is a fundamental operation that has important implications in a vast number of areas. For
instance, sorting is heavily utilized in applications such as database machines, in which hashing
techniques are used to accelerate data-processing algorithms. It is also the basis for interprocessor
message routing and has strong implications in video telecommunications. However, high-speed
electronic sorting networks are difficult to implement with VLSI technology because of the dense, global
connectivity required. Optics eliminates this bottleneck by offering global interconnects, massive
parallelism, and noninterfering communications. We present a parallel sorting algorithm and its
efficient optical implementation. The algorithm sorts n data elements in few steps, independent of the
number of elements to be sorted. Thus it is a constant-time sorting algorithm 3i.e., O112 time4. We also
estimate the system’s performance to show that the proposed sorting algorithm can provide at least 2
orders of magnitude improvement in execution time over conventional electronic algorithms.
1. Introduction

Sorting is a basic, fundamental operation used for
many symbolic, numeric, and artificial intelligence
tasks. Some of the applications of sorting include
the togetherness problem, i.e., the problem of bring-
ing all identical items in a list or a file together.
Sorting can also be used for matching problems, for
example, if one is trying to find all matching entries of
two files. If both files are first sorted, then all
matching entries can be found in one pass through the
data. A sort can also be used in database and
knowledge-base processing. Sorting algorithms can
serve as a basis for performing many common and
highly useful operations such as selection, projection,
division, and join in the context of relational data-
bases,1,2 and intersection, union, difference, and Car-
tesian product in the context of sets. Sorting can be
used to simplify searching. In addition to its wide-
spread use in information processing, sorting is also
important in communications, in which it serves as
the basis for packing routing in networks. Because
of its importance, there has been a great deal of work
on developing and analyzing sorting algorithms and
architectures.3–6 In general, a sort on a string of n
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data elements can be done with O1n log2 n2 compari-
sons by use of the best serial algorithms.7 Using a
conventional sorting network and taking advantage
of parallelism as much as possible permits sorting to
be done in O1log2 n2 time steps. Recently, a theoreti-
cal algorithm for electronic O112 sorting on a parallel
processor was proposed.8 However, the amount of
hardware required for its implementation makes it
cost prohibitive.
Optical architectures for sorting are worth develop-

ing for two reasons: 112 less conventional architec-
tures may permit a sorting operation to be done in far
fewer steps, and 122 the fastest conventional sorting
networks seem to require fairly dense, globally con-
nected networks that are difficult to implement with
conventional electronic technology alone. An ex-
ample of the latter is a sorting network based on
Batcher’s bitonic sort,9 which for a string of 2k data
elements requires 3k1k 1 124@2 stages. Each stage
consists of fast-Fourier-transform-like butterfly inter-
connections of varying sizes. Even the above-
mentioned O112 algorithm6 relies on a three-dimen-
sional reconfigurable mesh, which is also difficult to
implement. Optical technologywith its inherent par-
allelism and noninterfering communications is well
suited for implementing the sorting operation be-
cause of its ability to process two-dimensional 12-D2
data arrays in parallel. Optical interconnects also
permit the efficient and high-speed implementation of
the global connection patterns required for sorting
algorithms. Most important, optical systems permit
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the implementation of sorting with an execution time
independent of the number of data elements to be
sorted 3i.e., O112 time4; this is in contrast to electronic
sorting systems in which the execution time is usually
some function of the number of data elements. In
addition, optical sorting systems have minimum time
skew and may communicate information at optical
media bandwidths. Thus the sorting throughput
can be quite large and is limited in practice by the
response time of the optical active devices used.
This paper explores the problem of sorting and

discusses the optical implementation of a highly
parallel sorting algorithm that takes into account the
unique properties of optics. Several optical sorting
algorithms have been proposed in the past.10–12
Stirk and Athale11 proposed a parallel-pipelined sort-
ing algorithm using optical compare-and-exchange
modules that has a time complexity of O1log2 n2 steps.
Researchers at IBMalso proposed an optical enumera-
tion sort12 by use of an optical system based on phase
addition and subtraction 1interference2 to perform
analog algebraic operations. However, these coher-
ent systems are difficult to align. Futhermore, the
authors of these optical systems did not address the
issue of physically reordering the data elements after
their positions in the sorted output have been deter-
mined. This restricts the system to pointer-based
computing systems. In this paper we propose an
optical system capable of both determining the posi-
tions of the sorted data elements and physically
reordering them inO112 time steps. It uses photonics
for highly parallel interconnects and optoelectronics,
in the form of smart pixels, for processing.13–16 Thus
it exploits the advantages of both the optical and the
electrical domains. In its current form the system
can be configured as a high-speed sorting engine for
conventional computers or further developed to func-
tion as a stand-alone optical sorting processor.
The paper is organized as follows. Section 2 intro-

duces the parallel sorting algorithm. Section 3 dis-
cusses the detailed optical implementation of the
algorithm, the devices used, and related issues.
Section 4 presents the system layout and estimates
the performance that can be expected from the algo-
rithm. We also estimate the power requirement of
the system and discuss other related implementation
issues. Section 5 concludes the paper.

2. Constant-Time Parallel Sorting Algorithm

Given the ability of optics to process 2-D arrays of
data, parallel algorithms that are infeasible on elec-
tronic computers because of the requirement of a
large number of processors gain new importance.
As an example of a highly parallel algorithm, sorting
an array of n numbers requires the comparison of
every number to every other number. From this the
rank 1the position in the sorted output2 of each data
element is computed. In what follows we describe a
sorting algorithm that implements exactly the above
strategy in constant time 3i.e., O112, independent of
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the number of words being sorted4. In Section 3 we
present the optical implementation of each of the
steps.
Before formalizing the algorithm, let us first dis-

cuss the conventions that will be used in this example
and throughout the rest of the paper. Row vectors
will be indicated by lowercase boldface letters, such as
x, for example, whereas an uppercase letter indicates
a matrix. A subscript indicates the index of the
vector or matrix. Thus xj indicates the jth element
of the row vector x, and Ai, j indicates the element in
the ith row and the jth column of matrix A. On
occasion, the notation xi will be used to indicate the
ith element of column vector xT, where the i illus-
trates a correspondence to amatrix row. Finally, 2-D
data will be referred to as matrices in the context of
algorithms and data arrays in the context of optics.
This is done to adhere to both mathematical and
optical conventions for representing 2-D arrays.
To sort an n-element vector, we must compare each

element of the vector against every other element.
We perform these comparisons in parallel by broad-
casting the data vector a 5 37 8 2 8 54 and aT n times
and performing one comparison operation for every
resulting pair of elements. Optics performs this
operation easily with a simple imaging system. For
our example,

A 5 3
7 8 2 8 5

7 8 2 8 5

7 8 2 8 5

7 8 2 8 5

7 8 2 8 5
4 . 112

Each column of the resulting n 3 n data matrix A
contains n copies of each data element aj. In order to
compare each column of A to every element of a, we
must first transpose a and then broadcast it horizon-
tally:

AT 5 3
7 7 7 7 7

8 8 8 8 8

2 2 2 2 2

8 8 8 8 8

5 5 5 5 5
4 . 122

We perform the comparison operation between
every pair of elements of a by subtracting the two
matrices A and AT, in which the subtraction is
represented as the addition of a negative quantity:

D 5 A 1 12AT2 5 3
0 1 25 1 22

21 0 26 0 23

5 6 0 6 3

21 0 26 0 23

2 3 23 3 0
4 . 132



In the difference matrix D of Eq. 132 each column j
represents the comparison of each element aj with
every other element a. To compute the rank of each
element for an ascending order sort, we need to sum
the number of data elements that are numerically
less than element aj. If ai represents a row element
of aT and thus AT, then elements Di, j, where ai , aj,
contribute one to the rank of aj. Similarly, negative
values in D contribute zero to an element’s rank
because ai should appear after aj in the sorted array.
Finally, zeros inD represent equivalent data elements.
Each column of D contains at least one zero along the
matrix diagonal that represents the comparison of a
data element to itself. On the other hand, off-
diagonal zeros represent nonunique data elements.
For now, we let all zeros of D contribute one to aj’s
rank. Thus we arrive at the following for the rank
matrix R:

R 5 3
1 1 0 1 0

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

1 1 0 1 1
4 . 142

Summing each column j of R, we obtain the non-
unique rank for the corresponding element aj. Thus
the ranks of the sorted elements are

7 rank: 3,

8 rank: 5,

2 rank: 1,

8 rank: 5,

5 rank: 2.

Notice that the multiple instances of the number 8
are assigned the same rank. To resolve the non-
unique ranks, we compare the locations of the two
elements being compared. In our example, the first
occurrence of two nonunique numbers in the vector a
will be considered the larger of the two. Hence for
every 5i, j6, such that i , j and ai 5 aj, we treat 5ai, aj6
as though ai . aj. Thus if Di, j 5 0 and i , j, then Di, j
should still contribute to the rank of aj and hence
should remain nonnegative. To distinguish ele-
ments of D where Di, j 5 0 and i . j, we modify the
below-diagonal elements. To do so, we create a new
matrixU, whereUi, j 5 1 if i . j, and is 0 otherwise:

U 5 3
0 0 0 0 0

1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0
4 . 152
Next, we subtract U from D, again by the addition
of a negative quantity:

D8 5 D 1 12U2 5 3
0 1 25 1 22

22 0 26 0 23

4 5 0 6 3

22 21 27 0 23

1 1 24 2 0
4 . 162

In this new difference matrix D8 the negative
elements remain negative and hence contribute noth-
ing to an element’s rank. The positive elements
remain positive, or become 0, and still contribute one
to the rank of an element. The zeros in the above-
diagonal portion of the matrix D become negative in
D8 and no longer contribute to the rank while the
other zeros are unaffected. This resolves the ties
between nonunique ranks in the manner described
above. The new rank matrix is then

R8 5 3
1 1 0 1 0

0 1 0 1 0

1 1 1 1 1

0 0 0 1 0

1 1 0 1 1
4 , 172

where R8i, j 5 0 indicates that ai appears in the sorted
output after aj, and R8i, j 5 1 indicates that it does not.
Summing each column of R8, we get the fully resolved
ranks of each element in a:

7 rank: 3,

8 rank: 4,

2 rank: 1,

8 rank: 5,

5 rank: 2.

The result from the algorithm is the generation of
the rank vector, r 5 33 4 1 5 24, which contains the
positions of each of the data elements in the sorted
output. Although we demonstrate the algorithm for
two identical elements only, it should be noted that it
also works for more than two identical elements.
This is because the conflict-resolution scheme relies
only on a data element’s position; as a result, addi-
tional identical elements will merely increase the
rank of the higher-indexed elements. This algo-
rithm and an accompanying optical system are com-
plete when they are capable of rearranging the input
data to the order reported in r. The problem of
physically reordering the data reduces to the task of
determining, in parallel, which column of r contains
the number 1, the number 2, etc., so that we know
which element is first, second, etc., in the sorted
output. We accomplish this by comparing each ele-
ment of r to the numbers 31, . . . , n4. Mathematically,
10 June 1995 @ Vol. 34, No. 17 @ APPLIED OPTICS 3089



this is illustrated by spreading the r vector n times
and subtracting the vector 31, . . . , n4T, spread horizon-
tally n times, as in the following:

S 5 3
3 4 1 5 2

3 4 1 5 2

3 4 1 5 2

3 4 1 5 2

3 4 1 5 2
4 2 3

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5
4

5 3
2 3 0 4 1

1 2 21 3 0

0 1 22 2 21

21 0 23 1 22

22 21 24 0 23
4 . 182

In the resultingmatrix on the right-hand side of Eq.
182, Si, j 5 0, highlighted in boldface, indicates in which
column j of r the value i exists. It tells us that aj is to
be relocated to row i of the sorted output, where we
assume the sorted output as a column vector. Si, j 5

0 for only one element per row of S. If we use S to
select or discard elements from a copy of the Amatrix,
such that elements Si, j 5 0 select elements Ai, j and
elements Si, j fi 0 discard elements Ai, j, we have
effectively rearranged the inputs to their positions in
the sorted output. This operation is illustrated be-
low, where the selected elements are highlighted in
boldface:

A 5 3
7 8 2 8 5

7 8 2 8 5

7 8 2 8 5

7 8 2 8 5

7 8 2 8 5
4 ⇒ 3

2

5

7

8

8
4 . 192

Thus the problem of reordering the data reduces to
selection of the appropriate element from each row of
A because each row of A has a copy of each data
element and discards the rest. The discrete steps for
constant time sorting are summarized below:

Step 1. Process the input:

1a2 Generate matrix A by vertically spreading a n
times.

1b2 Generate matrix AT by horizontally spreading
aT n times.

Step 2. Compare every element of a with every
element of aT by computing the difference matrix
D 5 A 1 12AT2.
Step 3. Generate the U matrix, where Ui, j 5 1 iff
i . j.
Step 4. Resolve nonunique ranks by computing
matrixD8 5 D 1 12U2.
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Step 5. Generate R8 by thresholding D8, where
Ri, j 5 1 iffD8i, j $ 0.
Step 6. Form the rank vector, r, by summing each
column of the matrix R8.
Step 7. Reorder the sorted data:

1a2 Compare every element of r to every element of
31, . . . , n4T by expanding both by n and subtract-
ing the latter from the former to form the S
matrix.

1b2 Use S to select or discard A, where Si, j 5 0
indicates that data elementAi, j should be trans-
ferred to row i in the sorted output.

In what followswe present an efficient and economi-
cal optical implementation of the proposed algorithm.

3. Optical Implementation of the Constant-Time Parallel
Sorting Algorithm

We will now consider an optical system that imple-
ments the above steps and physically reorders the
input data in constant time. The system contains a
mixture of optics and electronics. Photonics are used
for highly parallel, noninterfering interconnects to
provide the massive connectivity required by the
algorithm. Electronics, integrated into arrays of
smart pixels, perform the algebraic operations.
The input to the system is a one-dimensional 11-D2

array of electronic data to be sorted. To provide the
optical data planes, vertical-cavity surface-emitting
lasers17 1VCSEL’s2 are used both within the smart
pixels and as the system input. Because VCSEL’s
can be integrated in densities of.106microlasers on a
single chip, their development is important in the
realization of high-density optically interconnected
systems. The output of the system is a 1-D array of
electronic sorted data. Because both the input and
the output are electrical, the system can be configured
as a high-speed sorting engine for conventional com-
puters. In the rest of this section we present the
optical implementation of this sorting unit. But
first, we describe the scheme used for subtracting two
optical analog values.

A. Optical Algebraic Operations

In order to implement steps 2, 4, and 7 of the
algorithm, we must have a way of subtracting two
numbers. Because the intensity of light cannot be
less than zero, we use a dual-channel scheme for
representing both positive and negative results. For
ease of explanation we assume that we are sorting
positive values only. Negative values will then occur
only as the subtraction result of two positive numbers.
The system can be easilymodified slightly to accommo-
date negative data elements.
Positive data numbers are represented by the

light-intensity level from a VCSEL array, VC1, and
their negated values are represented by an equivalent
light-intensity level from a second VCSEL array,
VC2. Thus a number is considered negative merely
by the fact that it is generated by VC2. The values
from the VCSEL’s propagate through the system as



two side-by-side channels. Because photons do not
interact in free space, the actual subtraction of the
absolute values generated by VC1 and VC2 is per-
formed electronically in a smart-pixel array. The
light from VC1 impinges upon a photodetector while
the light fromVC2 impinges upon a second photodetec-
tor. The positive photodetector outputs, V1 and V2,
where the notation Vy represents the photodetected
voltage corresponding to the light level of channel y,
are then fed into the positive and the negative termi-
nals, respectively, of an operational amplifier 1op-amp2.
The op-amp subtracts the absolute values, 0V1 0 2 0V2 0 ,
to fulfill step 7.

B. Generating the Rank Vector r

1. Implementation of Step 1 of the Algorithm
Figure 1 illustrates an optical implementation for the
first two steps of the algorithm. In step 1 the 1-D
input, a, modulates the columns of 2-D laser array
VC1 to form the A array. Meanwhile, aT modulates
the rows of a 2-D laser array VC2 to form the 2AT

array 1the minus sign is inherent in the use of VC22.
Thus the data duplication step is actually performed
before the optical generation of the data. This differs
slightly from our algorithm, which suggested that the
two vectors be vertically and horizontally spread n
times with optics. The optical broadcasting of a 1-D
array into a 2-D array reduces the optical power of
each data element by n. This has a direct conse-
quence in the execution speed of the algorithm. We
also avoided beam spreading because the distance
between analog levels is reduced by a factor of n.
This reduction makes it more difficult to distinguish
the analog levels at the detectors. Furthermore, the
beam spreading results in cross talk among the two
channels.

Fig. 1. Optical hardware for implementing steps 1 and 2 of the
algorithm. A and 2AT are formed by modulation of 2-D laser
arrays by a and aT, respectively. These are summed to form the
difference matrixD.
2. Implementation of Step 2 of the Algorithm
The difference array D of step 2 is formed by the sum
of arrays A and 2AT. This is performed optically by
merging and interlacing of the optical data planes so
that corresponding values are side by side. Recall
that at this stage the beams are merely propagated
together; the actual subtraction will be performed
later. In Fig. 1 each element of the D array contains
two numbers that represent the interlacing of the two
values. The number in the upper-right-hand corner
represents the intensity level of the negative light
component, and the number in the lower-left-hand
corner represents the positive light component.

3. Implementation of Steps 3, 4, 5, and 6 of the
Algorithm
Figure 2 illustrates the implementation of step 3 and
part of step 4. The 2U array of step 3 is formed by
modulation of a third VCSEL 1not shown2. The sum-
mation of D and 2U in step 4 is performed by the
beam splitter BS2 in Fig. 2. Figure 3 illustrates, for
a single pixel, the subtraction of the absolute values
in D8. Notice the integration of the photodetectors,
the modulation electronics, and the surface-emitting
laser in this close-up view of a single smart pixel.
The two light components from VC1 and VC2 within a
pixel of the D8 array impinge upon the photodetectors
of the smart-pixel array. The op-amp subtracts the
photodetected values. The output is thresholded by
a complementarymetal-oxide semiconductor gate 1not
shown2. The digital output from the thresholding
operation of step 5 then modulates the surface-
emitting laser for communication to the next stage.
Figure 4 illustrates steps 4, 5, and 6 on a full scale,

in which the D8 array is being viewed from behind.
The output of the electronic subtraction and threshold-
ing of D8 by smart-pixel array SP1 modulates the
surface-emitting lasers to generate the R8 array.
Because the lasers are integrated on the same side of
the substrate as the photodetectors, the R8 array
propagates back into the system and passes through
half-wave plate HWP1. HWP1 rotates the polariza-
tion of the light from the smart-pixel array so that it
will be entirely reflected from the polarizing beam

Fig. 2. Optical implementation of step 3 and part of step 4 of the
proposed algorithm. To resolve nonunique ranks, we add U to D
to form D8; the actual subtraction is performed in the next stage,
shown in Fig. 3.
10 June 1995 @ Vol. 34, No. 17 @ APPLIED OPTICS 3091



splitter PBS1. The polarizing beam splitter reduces
the power loss of the system and also prevents
backward propagation of light from SP1. The half-
wave plate can be eliminated from the system if the
lasers on SP1 are orthogonally polarized with respect
to VC1 and VC2. The cylindrical lens vertically
sums the ones in the R8 matrix to form the rank
vector, r, in accordance with step 6.
Next, we need to reorder the input data according to

the rank vector. This additional step may not be
required for all applications. For example, if the
data elements are sorted in a content-addressable
memory, then any data element can be recalled di-
rectly by its rank, and if this is what is needed, then
physical reordering is not necessary.

Fig. 3. Optical implementation of the actual subtraction from
step 4 and all of step 5. The light components from VC1 and VC2
impinge upon their corresponding photodetectors in the smart
pixel to generateV1 andV2. The op-amp performs the subtraction
0V1 0 2 0V2 0 . The output is thresholded, the result of which
modulates the laser driver.

Fig. 4. Optical system for implementing the actual subtraction
phase of step 4 along with steps 5 and 6 on a full scale. Each pixel
of the D8 array is imaged onto a photodetector of the smart-pixel
array. The subtraction and the thresholding of steps 4 and 5 are
performed by the integrated electronics in the smart-pixel array.
The surface-emitting laser writes the result to the R8 array, which
then reflects off the beam splitter and is then vertically summed by
the cylindrical lens to form the rank vector, r, in step 6. The
labeling conventions on the D8 array in this figure have been
changed to mirror the fact that we are now viewing it from behind.
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C. Physical Reording of the Input Data

In addition to the generation of the rank vector, an
equally important aspect of this paper is the physical
reordering of the input. This has received little
attention previously. The optical system in Fig. 5
performs the final step of the algorithm. Here, we
use a second smart-pixel array to select the appropri-
ate element from each row of the A array. The
labeling conventions of theA array are reversed in the
figure because it is being viewed from behind.
As shown in Fig. 5, each pixel of SP2 consists of a

photodetector, comparison logic, laser driver electron-
ics, and a surface-emitting laser. The photodetector
receives the optical power from each pixel of the A
array. The comparison logic selects the appropriate
element from each row of the A array, as outlined in
Eq. 182. We spread the r vector and the array
31 2 3 4 54T vertically and horizontally by writing them
to the column- and the row-addressing lines of SP2,
respectively. The array 31 2 3 4 54T can be easily
implemented by a resistive network integrated onto
the device substrate because its values remain the
same for each sort unless the order of the sort
1ascending or descending2 is changed. The r vector is
imaged onto an integrated 1-D photodetector array
that is internally connected to the column-addressing
lines. If the two input signals to the comparison
logic are identical, corresponding to the condition
Si, j 5 0 in Eq. 182, then the output enables the laser
driver so that the optical intensity level detected at
the photodetector can be regenerated by the surface-
emitting laser. If the two signals are not identical,

Fig. 5. Optical setup for physically reordering the sorted input.
The A array reflects off the polarizing beam splitter and is imaged
onto the smart-pixel array 1SP22. If a smart pixel has identical
signals on the column- and row-addressing lines, the optical
intensity level detected by the photodetector is regenerated by the
surface-emitting laser. On the other hand, if the two signals are
different, the smart pixel will generate no light. Therefore only
selected elements of A reflect off SP2 and are focused on a column,
which is the desired sorted data.



i.e., Si,j * O, the output of the comparison logic
disablesthe laser driver so that no light is generated.
The selected elements of A are focused to a vertical
line at the focal plane of cylindrical lens CL2. Thus
we have effectivelydemonstratedthe implementation
of Eq. (9), the physical reordering of the sorted data.

4. System Layoutand Performance Analysis

A. System Layout

In Fig. 6 we present the physical layout of the
proposed optical sorting system. Two vertical-cavity
surface-emitting lasers (VCSEL’S), VC1 and VC2,
provide the 2-D optical input data, as mentioned in
Subsection 3.B. In order to reduce the amount of
hardware required (a VCSEL and beam splitter BS2)
and also reducing the power loss due to beam split-
ting, we generateboth the –AT and the – U arrays by
VC2. Because U is an array of constants, it can
easilybe addedto the ATarray as one of the inputs to
the VCSEL’S laser drivers. Thus VC2 provides the
array –(AT + U) to be added to A to form the D’
array. Two copies of the D’ array are generated by
beam splitter BS1. One copy is imaged onto SP1 by
polarizing beam splitter PBS1 for the generation of
the R’ array. The rank vector is formed by CL1 and
imagedonto the column-addressingphotodetectors of
SP2. In order to preservethe parity of the array, we
can implement this 90° deflection with a pentaprism
(not shown) instead of a mirror. The other copy of
D’ is imaged onto the pixels of SP2 by PBS2 for the
reordering step. Because this step requires the A
array, a slit filter removes the (AT+ U) elements
from the D’ array, leaving behind only the A array.
After SP2 selects the appropriate elements of A, the
sorted data is imaged onto the 1-D detector array,
DET.

The layout in Fig. 6 also suggests that the system
volume has the potential to be very small. Using
l-in. (2.54-cm) aperture optics (lenses,beam splitter,
and half-wave plates) with a modest 1.5-in. (3.8-cm)
component separation, we see that the entire system

Apgm. 20m .

I mprew”?balnjariqj I
Fig. 6. Layout of the proposedoptical sorting system.
can fit in an area of roughly 20 cm x 20 cm.
Although the above measurement does not include
the interface electronics or the heat-removal compo-
nents, the complete optical system should be small
enough to be manufactured as an add-on unit for
mainframe computers.

B. Execution Speed and Power Requirement

In this section we estimate the system’s execution
speed and power requirements. For the maximum
execution speed we first calculatethe maximum rate
the detectors can be operatedbecausethis parameter
will limit the cycle time. The detectors’ operating
speeds are dependent on the optical power available
to them. With current technology a single VCSEL
can provide 3 mW of optical power.18 Because the
proposed optical sorting system is analog, the 3-mW
value will correspond to the largest analog intensity
level that the system can represent. As shown in
Fig. 6, the data from VC1 and VC2 are partially
reflectedor transmittedby BS1 and imagedonto both
smart-pixel arrays. We assume that all glass optics
result in negligible loss of power because special
coatings can be used. Thus the maximum optical
power, Pi., incident upon each of SP1’S (or SP2’S)
detectors is 1.5 mW. This optical power needs to
charge each detector to an energy level,E, of 10 pJ.19
The energy, E, is linearlyproportional to the incident
optical power Pinby the expressionE = PinAt,where
At is the integration time of the detector. Smaller
analog levels will require the same integration time
becauseboth E andPinwillbe reducedproportionally.
With the values for Pinand E listed above, a single
detector of a smart-pixelarraywillrequire an integra-
tion time of 13.33 ns. Thus it can be operated at
-75 MHz for current technology.

For a complete single sorting operation the input
optical signal from VC1 and VC2 must propagate
through BS1 and PBS1, be modulated by SP1 and
SP2, and finally be detected by DET. Thus the
overall cycle time to complete the sort, Z’CYCI.,becomes
the sum of the times through each of these devices.
Assuming the propagation delay of optical passive
devices such as lenses, beam splitters,and mirrors is
negligible,TCYC1,becomes

T~ycle= Tu+ T,pl + T.P2+ Tdet, (

where Tu represents the modulation time of the
VCSEL array, T,prepresents the responsetime of the
smart-pixel array, and Td,t represents the response
time of the 1-D detector array. T,p can be further
decomposed into the sum T. + Te + Td, where T.
represents the modulation time of the smart pixel’s
VCSEL’S, Te represents the response time of the
internal electronics, and T~ rem-esentsthe response
time of the smart pixel’s de;ect&s. Therefore “

T~cle= Tu+ (2TU+ 2T. + 2T~) + Tdet

= 3TU+ 2T. + 2Td + Td,t, (
10 June 1995 / Vol. 34, No. 17 / APPLIEDOPTICS 3093



T. = 100 ps, T, = 10 ns,lGand Td = Tdet= 13.3
ns, as previously calculated for current technology.
Thus Tcyclebecomes 60.2 ns. If the rank-vector
determinationis separatedfrom the physicalreorder-
ing step, which is common5 and can easily be accom-
plished with pipelining, Eq. (11) can be reduced to
2TU+ T, + 2Td, resulting in a pipelinedcycle time of
36.8 ns.

For the optical power requirement of the system,
severalfactors must be considered. First, the major-
ity of the power requirement will be related to the
output of the VCSEL’S. Second, the 3-mW output
level from each VCSEL corresponds to the maximum
analog level that the system can represent. Thus
the power requirement theoretically varies with the
input data set. In our power estimate we evaluate
the worst case by assuming that each VCSEL is
required to source 3 mW. Keep in mind that, on the
average, actual values should be lower. We also
assumethat the powerrequirementof SP1 is substan-
tially less than the other arrays because it has to
output only a single level instead of an entire analog
range. With the major power contributions coming
from VC1, VC2, and SP2, approximately 9 mW of
optical power is needed for each channel. For a
currently availablearray size, such as 8 x 8, the total
optical power requirement is -600 mW. As array
sizes increase, this power requirement will also grow
quite rapidly because it is a function of nz. We
anticipate that the future will bring not only larger
array sizes but more power-efficientdevices, such as
lower-power detectors.

C. Comparisonto Electronic-BasedSortingSystems

In addition to the execution time an equally impor-
tant parameter is the bit capacity of the system, i.e.,
the word size. Many factors affect the word size.
Once such factor is the uniformity of the VCSEL and
detector arrays. To ensure that the same value
applied to two VCSEL’S results in the same output
level, one should ensure little variation in the operat-
ing characteristics among the individualVCSEL’S in
any one array. A similar argument holds for the
detector arrays. Variations that occur between two
separate arrays can potentially be compensated by
adjustment of the biasing levels for the device. This
issue will of course become more acute as the array
size grows. However, we believe that the maturity
of semiconductor processing technology should help
greatly in minimizing devicevariations.

Another factor that strongly afTectsthe word size is
the dynamic range of the detectors. Currently, light
intensity may be produced, controlled, and detected
in -128 discrete levels.20-23 This implies that the
sorter has the capability of a 7-bit microprocessor.
Obviously this limits the word length of the datathat
can be sorted in constant time. The number of data
elements to be sorted at once is not affected by this
limitation. However, this same restriction is also
imposed upon electronic sorting systems. For a
string sort atypical string might havebetween 10and
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20 characters in it. Because both optical and elec-
tronic sorters can operate on only a subset of this
string at any time, a singlecharacter for instance, the
sorting time is inevitably related linearly to the
number of characters. In addition to the word-
length restriction it is also prohibitive to build a
sorting system that is capable of sorting a sequence
length of 10,000 data items without iteration, in
which a sequence length is the number of data items
to be sorted. In general, the sequencelength, m, will
be much larger than the number of items, n, that the
sorter can hold at any time. Thus the data set will
have to be divided into m/n smaller data subsets of
sequence length n, which will then be sorted sepa-
rately and compared with each other during multiple
passes through the data set. At first glance it would
seem as though one needs to sort each data subset
against itself and then against each other subsets.
This approach would extend the execution time to
O(m2/n2)cycles.

Fortunately there are algorithms that can reduce
the number of passes through the data. One of the
fastest techniques involves a preprocessing step to
arrange the data into groups called buckets. These
buckets are chosen to match the capacity of the
system as closely as possible. Ideally, m/n buckets
are chosen and all data items that fall between
adjacentlimitsareplacedin the correspondingbucket.
As an exampleof a simplebucket algorithm, consider
limits that are dictated by alphabetical order. For
instance, all data items beginning with the letter A
are placedin the first bucket, all data items beginning
with the letter B are placed in a second bucket, etc.
This is easily accomplished if the preprocessing step
scans the first letter of multiple data items in parallel
and transfers the data to the appropriate bucket on
the fly. The data within the buckets are unsorted
even though the buckets are ordered relative to each
other. The preprocessing step can be run on the
host computer and overlapped with the execution
time of the optical sorting system. Also, as the
capacityof the system increases,fewer buckets will be
neededand the preprocessing step will execute in less
time. With fewer buckets and the potential to over-
lap the execution time the bucket preprocessing step
can substantially improve the overall execution time
of the algorithm. After that, all we have to do is
internally sort each of the buckets. and then the
entire d;ta set will be sorted automatically. Thus
the number of steps has been reduced from O(m2/n2)
to O(m/n).

In practice the latter time complexity must be
multiplied by a small constant number of iterations.
This occurs when a few of the buckets overflow. A
bucket overflows when the number of data items
assigned to it exceeds the capacity of the system.
For instance, owing to the prevalence of the letter A,
more than n data items may appear in the A bucket,
whereas very few may appear in the Z bucket. This
means that an additional pass may be necessary in



.

order to sort the A bucket. For systemswith a large
capacityn, the constant factor is - 3.6’24

A comparison of the proposed optical sorting sys-
tem was then made based on the execution time of an
electronic hardware-based sorter and the Quicksort
benchmarks. Quicksort24,5,Gis a software sorting
algorithm that is run on machines to evaluate their
sortirw ca~abilitv. The electronic sorter. called the
biway;or<er, is ~asedon a bidirectionalsystolic array
implemented with 3-p,mcomplementary metal-oxide
semiconductortechnolow. and. to the authors’ knowl--. ,
edge,is the fastestphysicallydemonstratedimplemen-
tation. The biway sorter is 10 bits wide, has a
capacity,n, of 20 data items, and an execution time of
O(m), where m is the sequence length.

Figure 7 illustrates the execution times of the
Quicksort algorithm, the biway sorter, and the pro-
posed optical sorting system versus the sequence
length. Line 1 on the graph illustratesthe execution
time of the Quicksort algorithm running on a Bur-
rouszhsB6700 comtmter with 0.5 MIPS (million in-
structions per sec&d) capacity.25 For comparison
with the Quicksort benchmark the biway sorter was
also run at 0.25 MHz. although it has actuallv been
demonstrated at 9 MHz. Its ;xecution time is”repre-
sented by line 2 in the graph. For the proposed
optical system we also calculated the execution time
of the system running at 0.25 MHz with a modest
smart-pixel array size of 8 x 8, and we display the
results as line 3. To be consistent with the compari-
son in Ref. 6, we assumed a bucket preprocessing
factor of 3, and the physical relocation of the data set
was ignored. From these three lines we see that,
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Fig. 7. Execution time versus sequence length for the Quicksort
algorithm (line 1), the electronic biway sorter (line 2), and the
proposed optical sorting algorithm (line 3). Line 4 illustrates the
performance of the biway sorter extendedto its current clock rate
of 9 MHz, and line 5 illustrates the expectedfuture performance of
the optical system with a 100 x 100 smart-pixelarray.
under the same test conditions of low clock rate and
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even a modest array size, the proposed optical system
was almost an order of magnitude faster than the
electronic biway sorter and almost 3 orders of magni-
tude faster than the Quicksort benchmark.

We then expandedthe comparison in an attempt to
predict the performance that can be expected in the
future. For this the clock rate of the biway sorter
was extended to its demonstrated 9 MHz, and its
performance was redisplayed as line 4 of the graph.
The clock period of the optical system was then set to
the 36.8-ns value calculatedearlier in this section for
current technolo~. Although they have not been
currently realized, it is suggested2Gthat we can
reasonablyexpect smart-pixelarraysin sizesof 100 x
100 in the future. With this future capability we
illustrate in line 5 that the proposed optical sorting
system has the potential to be at least 2 orders of
magnitude faster than the biway sorter and between
5 to 6 orders of magnitude faster than the Quicksort
algorithm. Obviously,electronic technology has pro-
gressed far enough that circuits can run at much
faster than 9 MHz. This is not an issue for our
system because our speedupis due to the parallelism
exploited in the constant-time algorithm and not the
clock rate. For similarclock rates the optical system
will always deliver a performance improvement of at
least Major future improvements in the optical
system will come from advancements in smart-pixel
integration densities rather than increases in clock
rate.

5. C

Advances in the use of optics in computing have
opened up new possibilitiesin severalfieldsrelatedto
high-performancecomputing, high-speedcommunica-
tions, and parallel algorithm design. It is necessary
to take into consideration the specific properties of
optics, such as massive parallelism and global inter-
connects, to designalgorithms that execute faster.

Sorting is a fundamentaloperation that has impor-
tant implications in many areas. In this paper we
presenteda parallelsorting algorithm and its efficient
opticalimplementationusingcurrentlyemergingtech-
nology. The algorithm sorts n data elements in
constant time, i.e., independent of the number of
words being sorted. The proposed optical system is
capableof both generatingthe rank vector and physi-
cally reordering the sorted data. Previously pro-
posed constant-time optical sorting systems pro-
ceeded only as far as generating the rank vector,
which is limited to being used as a pointer. Thus the
data were not physically rearranged, as desired in
many applications.

Our novel system uses smart-pixel arrays for opti-
cal data processing. Obviously, continued develop-
ments in the integration densities of smart-pixel
arrays are needed for the practical realization of
constant-time sorting. Nonetheless, the algorithm
and its optical implementation presented in this
paper are excellent examples of what optics can
10 June 1995 / Vol. 34, No. 17 / APPLIEDOPTICS 3095



achieve. With the continued maturing of smart
pixels, it is anticipated that we can sort 100 data
items in <40 ns. This exhibits a quantum leap (*2
orders of magnitude) over its electronic counterparts
in execution time. We expect that such an algorithm
will have a major effect on sorting applicationsin the
future.
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