
A Methodology for Cognitive NoC Design

Wo-Tak Wu and Ahmed Louri

Abstract—The number of cores in a multicore chip design has been increasing in

the past two decades. The rate of increase will continue for the foreseeable future.

With a large number of cores, the on-chip communication has become a very

important design consideration. The increasing number of cores will push the

communication complexity level to a point where managing such highly complex

systems requires much more than what designers can anticipate for. We propose a

new design methodology for implementing a cognitive network-on-chip that has

the ability to recognize changes in the environment and to learn new ways to adapt

to the changes. This learning capability provides a way for the network to manage

itself. Individual network nodes work autonomously to achieve global system goals,

e.g., low network latency, higher reliability, power efficiency, adaptability, etc. We

use fault-tolerant routing as a case study. Simulation results show that the

cognitive design has the potential to outperform the conventional design for large

applications. With the great inherent flexibility to adopt different algorithms, the

cognitive design can be applied to many applications.

Index Terms—NoC, network-on-chip, cognitive process, intelligent agent,

adaptive, machine learning, multicore, fault-tolerant

Ç

1 INTRODUCTION

THE proliferation of multiple cores on the same die heralded the
advent of a communication-centric system wherein the design of
the on-chip communications connecting various modules has
become extremely important. A flexible and scalable packet-
switched architecture called network-on-chip (NoC) [5] is com-
monly used. It is expected that core count will continue to increase.
With continuing advances in process technology, the core count is
expected to soon exceed one thousand [3].

As the number of components of a system increases, the proba-
bility of having component failure also increases. Also, network
congestions, deadlocks and hotspots may occur. There are many
potential issues in operating the NoCs. They will reach an operat-
ing complexity level that cannot be anticipated by their designers.
The network must be intelligent enough to cope with the unfore-
seeable conditions so that the entire system can function efficiently
and reliably [6]. We propose to build cognitive NoCs (CogNoCs),
i.e., networks that can recognize and adapt to changes in the envi-
ronment, learn from experiences and retain knowledge gained for
future usage. With such capabilities, the system can attain better
latency, throughput, power consumption and fault tolerance.

Learning typically is a relatively slow process whereas router’s
operations, like the route computation (to find out where to for-
ward the packet to), takes only one or two clock cycles. To accom-
modate such big discrepancy, we propose a hardware and
software co-design approach to build CogNoC. In CogNoC, the
routers and the cores are augmented with hardware (for the
routers) and software (for the cores) that facilitate the slow learning
process and the high-speed router operations. At the high level, the
router operation in a CogNoC works as follows. The router recog-
nizes the inputs as a pattern. It uses such pattern to look up a
knowledge base (KB) in the router for a solution (a plan of actions).
If a solution is found, it acts on it immediately; otherwise, it relies
on the core to execute an algorithm to produce a solution, which
will be updated to the KB. The core may also initiate a process to

find a better solution in parallel with the router operations. Next
time the same pattern occurs, the router will be able to find the
solution in the KB immediately.

The router does not contain any hard-wired complex decision-
making algorithms, for route computation or flow control, for
example. This provides tremendous flexibility to allow the system
to adopt different algorithms, thus widening the router’s design
space. Furthermore, CogNoC only relies on local information; there
is no centralized control in the network. Each core-router pair
works autonomously to achieve a global objective, i.e., efficient
delivery of network packets. This has the potential for better
network scalability.

In this work, we chose fault-tolerant routing as a case study. The
network needs to route packets from source nodes to destination
nodes in spite of faulty connections among routers. Simulation
results show that compared to a conventional NoC, CogNoC is
able to find shorter paths in 8 percent of all paths by using a
simple learning algorithm and achieves an average improve-
ment of 15 percent in latency.

2 BACKGROUND

2.1 NoC

The prevailing topology is 2D mesh. Fig. 1a shows a 4 � 4 mesh.
Each core is attached to a router which connects to four neighbor-
ing routers (except for those at the boundaries). Message from one
core is routed through the routers to its destination. One commonly
used routing algorithm is the dimension-order routing (DOR) [4].
When a packet reaches a router, the router determines which
router it will relay the packet to. Fig. 1b shows the router micro-
architecture. It has a set of buffers for holding the packet temporar-
ily and a crossbar switch to direct the packet to a different
direction (north, east, south or west). NoC’s routing operation is
typically broken into different stages and execute in a pipelined
fashion at GHz clock rate [4].

2.2 Cognitive Process

Thomas [8] proposed the definition and framework of a cognitive
network for an adaptive data network (not a NoC) that can
observe, act, learn and optimize its performance. The network
involves a cognitive process, which is depicted conceptually in a
simpler form in Fig. 2. The active component is the intelligent
agent. It observes what is happening in the environment. The
observations become the inputs to the agent. The agent processes
the inputs with the knowledge it has. Then it produces a set of
actions to apply to the environment to try to achieve the predefined
system goals. Learning takes place when the desired outcome is
not attained yet.

3 COGNOC DESIGN

In this section, we lay out a set of requirements that CogNoC needs
to satisfy. Then we provide a detailed architecture that satisfies
these requirements. This set of requirements will guide the design
and implementation.

3.1 Requirements

3.1.1 Speed

There are very stringent timing requirements on NoCs. In the
router pipeline, it typically decides how to route the incoming
packet in the first cycle, and the packet go through the pipeline
in a few more cycles. So, speed is a critical factor in router oper-
ations. CogNoCs must be able to maintain the normal high-
speed operation speed and at the same time accommodates the
cognitive capabilities.

� The authors are with the Department of Electrical and Computer Engineering,
University of Arizona, Tucson, AZ 85721.
E-mail: wotakwu@email.arizona.edu, louri@ece.arizona.edu.

Manuscript received 4 Apr. 2015; revised 6 May 2015; accepted 11 June 2015. Date of
publication 18 June 2015; date of current version 23 June 2016.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/LCA.2015.2447535

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 15, NO. 1, JANUARY-JUNE 2016 1

1556-6056� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

3.1.2 Area

Silicon real estate is expensive in a multicore chip. It has significant
impact on design, validation, manufacturing and testing. With
additional functionality in a CogNoC, it is imperative to keep the
router small. Thus the control logic implemented in a router cannot
be too complex.

3.1.3 Autonomy

With a thousand of routers on-chip, a centralized control of all
routers would not be feasible due to the large communication over-
head. Router decisions must be made locally. We postulate that the
property of autonomy will help produce effective solutions. This
requirement is inspired by many elegant solutions observed in the
natural world, e.g., in ant and bee colonies, where individual con-
stituents act autonomously to achieve global goals without a cen-
tralized command structure. Most conventional NoCs are small and
use very simple control schemes; autonomy is inherently achieved.
For CogNoCs of much larger size and utilizing the cognitive capa-
bilities, we need tomaintain the same autonomous property.

3.1.4 Flexibility

Different applications may present vastly different network traffic
patterns to the system. One single algorithm probably is not able to
satisfy all different communication requirements. This requires
routers to be flexible to run different algorithms. Conventional
NoCs have only one single algorithm implemented as hard-wired
logic in the router. However, the potentially many required algo-
rithms in CogNoCs cannot be all realized the same way as they
would take up too much area.

3.2 CogNoC Router Architecture

Routers in a CogNoC rely on cores for their operations. Therefore,
part of the overall router architecture, depicted in Fig. 3, is the core.
The router design is augmented with three modules: a pattern rec-
ognition module that translates the set of inputs (network packets
and conditions) to a pattern that can be manipulated more effi-
ciently; a KB module that stores the learned knowledge, which can
be recalled in a single clock cycle; and a control agent orchestrates
the router operations.

The pattern recognition greatly reduces the potentially vast
input space to a much smaller pattern space. For example, an input
is a 16-bit integer; we might want to reduce it to a qualitative entity

(a pattern), like large, medium and small, that can be encoded in just
2 bits. Such mapping is obviously application dependent. The algo-
rithm might be quite sophisticated in that it can combine multiple
inputs as one entity. This is a necessary step to limit the size of the
KB, making the implementation practical.

The KB module must be very fast for high-speed router opera-
tions. For certain commonly known patterns, the KB can be pre-
loaded to reduce the learning or computation efforts during run
time. Basically, if the input pattern has been dealt with before, a
known action plan can be retrieved immediately from the KB that
the agent can execute on. Otherwise, the agent will need ask the
core to produce a solution, which will be eventually updated to the
KB. Next time that the same input pattern is encountered, the con-
trol agent knows how to handle it locally.

In the core, the router agent produces solutions for the router. A
request from the router control agent wakes up the router agent in
the core to compute an initial solution to be returned to the router
immediately. The router can continue its operation. At the same
time, the core router agent initiates the learning process to try to
produce a better solution. If a better solution is found, it will be
updated to the KB to replace the original solution.

A policy database in the core stores different algorithms and
various rules or policies for generating new knowledge. The core
router agent works closely with the operating system to determine
what algorithms to use and what rules to apply, depending on the
application. The determination can be made directly with specific
inputs when a new application is started, or the core router agent
can run a high-level monitoring process for making the decisions
on an on-going basis.

3.3 Advantages of CogNoCs

With the KB built into the router, the router can maintain the nor-
mal high-speed operations except in the cases where the input pat-
terns have not been observed before. Those cases will incur
significant overhead in the communication with the core and the
computation done by the software router agent. However, we pay
the penalty only once. The introduction of the KB is inspired by the
insight that the computation for the solution to a particular pattern
needs take place only once; it is not necessary to compute again
and again as a conventional NoC would do.

With the learning capability in a CogNoC, the solution may get
better over time whereas it will stay the same in a conventional
NoC.

The control logic in the router becomes simpler because the com-
plex decision-making algorithms are contained in the core as soft-
ware components, not as logic gates taking up space in the router.
CogNoC does not waste time and energy to re-compute the same
solution; it just looks up from the KB. The addition of KB incurs just
a small area. As a result, we achieve overall reductions in router
area and also power consumption (both static and dynamic).

The pattern recognition module and control agent do add
some area overhead to the router. However, the pattern recognition

Fig. 1. (a). NoC of a mesh topology in a multicore architecture. Each core (C) is
attached to a router (R). (b) Router microarchitecture.

Fig. 2. The basic components in a cognitive process.

Fig. 3. CogNoC router architecture (only the control section of the router and
router-related parts of the core are shown).

2 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 15, NO. 1, JANUARY-JUNE 2016

module can be made very simple and smaller, as illustrated in our
case study, and the control agent’s logic is rather simple. This extra
overhead is easily offset by the overhead if the complex algorithms
were implemented in the router.

Operation decisions are made only between the core and the
router; there is no central control or management involved. All
core-router pairs in the network work autonomously towards the
global goal of efficient delivery of packets. The property of auton-
omy enables the NoC to be highly scalable because the router oper-
ations are not affected by the number of nodes in the network.

Since the majority of the logic is software-based in CogNoCs, it
makes the system highly flexible in adopting various algorithms.
Furthermore, the flexibility makes field upgradability and repair
possible. It would be much easier to upgrade or repair products
already deployed in the field because the software components can
be replaced. A CogNoC design will also save costs in silicon valida-
tion and testing.

4 IMPLEMENTATION

We implemented the proposed CogNoC on gem5, a cycle-accurate
multicore simulator [1]. We chose an application to illustrate the
concept, namely fault-tolerant routing, which involves only the
route computation stage in the router pipeline. The routers need to
route the packets despite a number of faulty links in a large mesh
network.

Gem5 only supports DOR, an algorithm assuming no faulty
links in the network, so we added a fault-tolerant routing algo-
rithm named F-cube4 [2]. However, F-cube4 does not have any
learning capability, so we implemented reinforcement learning, a
machine learning technique.

For very large and complex systems, it is difficult or infeasible
to determine precisely at design time the model under which they
operate. Attaining an optimal solution cannot be guaranteed given
the vast search space and working constraints. We only use a best-
effort approach to provide a solution which may be sub-optimal.

4.1 Router

The pattern recognition module is a simple preprocessing module
to extract the general direction where the packet should be heading
from the packet’s destination node’s coordinates. It is a logical
choice to map the coordinates to four quadrants. The routing algo-
rithm is oblivious to the exact destination of the packet; it only con-
siders its general direction expressed as quadrant. The health state
of a link can be represented by one bit. Combining the quadrant,
link health states and routing state of the packet, an input pattern
is thus formed for further processing. The pattern can easily be fit-
ted into a 12-bit data item.

The conventional routing table in a router is replaced with the
KB. It is implemented as content-addressable memory (CAM) [4].
Given the pattern produced by the pattern recognition module, the
KB searches for a match in the memory to produce a solution or a
set of actions. If a match is found, the solution consists of 1) the
direction where the packet need be forwarded to; 2) the output vir-
tual channel number; 3) updated routing state. The total solution
width is less than 8 bits long. As the input width increases, the prob-
ability of having invalid combinations of fields within the input

pattern also increases. A KB implementation with regular memory
would require full memory capacity, thus a lot of the capacity will
be unused. CAM provides the flexibility to support only valid pat-
terns, and at the same time limit thememory capacity.

The KB is preloaded with solutions to the normal no-faulty-link
conditions to avoid the route computation. The KB issues an out-
put signal to indicate whether the input pattern is matched or not.
If matched, the KB outputs a set of actions; otherwise, the control
agent will send a request to the core for a solution.

4.2 Core

The router agent in the core is a software component. It executes
the F-cube4 algorithm to produce an initial solution, an alternative
direction to route the packet, which is updated to the KB and used
to forward the packet. Then the packet continues its journey.

Due to the path diversity of the mesh network, directions other
than the initially chosen one may work better. The core router
agent initiates a learning process to explore alternative directions.
There is a cost function associated with the path of delivering a
packet to the destination. The function being used is the hop count
(number of routers encountered in the path). It will be used to
select the best solution to keep, i.e., the one with the lowest cost.

To find the cost of a path, the agent sends out a special ping con-
trol packet to the destination node. As the ping packet traverses
through the network, it tallies the routers it encounters. Upon
reaching the destination node, the count is returned back to the
sender core.

There may be multiple faulty links encountered in the path.
Since each core-router pair operates independently, all the learn-
ing processes initiated take place in parallel in different core-
router pairs. Thus, the CogNoC can converge to a final solution
rather quickly.

5 EVALUATION

We run simulations with synthetic random traffic loads on a
16 � 16 mesh network. The injection rate per node is 0.01 packet/
cycle. Each node sends 1,000 packets to randomly selected nodes.
Faulty links are modeled on links between two routers. A faulty
link means packets cannot be transferred between the routers
directly. Twenty percent of all router-router links are designated as
faulty before simulation starts. The core router agent is not cycle-
accurately simulated at the moment. We estimate that the algo-
rithm execution and the communication overhead total to about
100 router clock cycles. We compare the latency performance of
CogNoC with that of a non-cognitive design, i.e., conventional
design with just addition of the F-cube4 algorithm, which we will
label as FtNoC hereon.

The simulation results show that CogNoC is able to shorten 8
percent of all routes with an average reduction of 15 percent in hop
counts on those paths, compared to FtNoC. Fig. 4 shows that ini-
tially, the average latency of CogNoC is much higher than FtNoC
because of learning new paths. After about 3,000 cycles (3 ms for
1-GHz clock rate), the latency of CogNoC becomes almost the
same as FtNoC, as almost all the necessary learnings have been
completed. Fig. 5 highlights the same figure at the low latency
range, showing CogNoC performs a bit better, by an average of
0.7 cycles, than FtNoC after the learning period.

Fig. 4. Latency comparison over an extended period of time.
Fig. 5. CogNoC performs slightly better after initial learnings.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 15, NO. 1, JANUARY-JUNE 2016 3

6 RELATED WORK

Liotta [6], Thomas et al. [8] and Martinez and Ipek [7] have pro-
posed to build data networks or multicore systems with cognitive
approach or machine learning techniques. Our proposed work tar-
gets specifically on large-scale NoC design. To the best of our
knowledge, this is the first time that cognitive concepts have been
used in NoCs using a hardware and software co-design approach.

7 CONCLUSION

We have devised a methodology for designing and implementing
cognitive NoCs. CogNoCs have ability to learn and to recognize
changes in the environment. Network constituents work autono-
mously but collectively achieve global goals. It is a holistic
approach that crosses many architectural layers.

A case study on fault-tolerant routing shows that with a simple
and straight-forward learning algorithm, CogNoC outperforms
slightly the conventional design over an extended period of time. It
is able to quickly overcome the initial learning’s large overhead.

The combination of cognitive capabilities and architectural
design makes CogNoC a promising approach to address challeng-
ing issues effected in ever increasingly complex systems. We
believe the CogNoC approach is a good way to target many large
applications that allow time for the system to overcome the initial
learning overhead. CogNoC provides many benefits: 1) better per-
formance over time; 2) simpler and smaller router design; 3) great
flexibility to accommodate different types of algorithms, which
broadens the design space and increases the applicability to many
application domains; 4) better network scalability; 5) field upgrad-
ability and repair; and 6) reduction in costs in silicon validation
and testing.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, May 2011.

[2] R. Boppana and S. Chalasani, “Fault-tolerant wormhole routing algorithms
for mesh networks,” IEEE Trans. Comput., vol. 44, no. 7, pp. 848–864, Jul.
1995.

[3] S. Borkar, “Thousand core chips: A technology perspective,” in Proc. 44th
Annu. Design Autom. Conf., 2007, pp. 746–749.

[4] W. Dally and B. Towles, Principles and Practices of Interconnection Networks.
San Francisco, CA, USA: Morgan Kaufmann, 2003.

[5] N. Jerger and L. Peh, On-Chip Networks. San Rafael, CA, USA: Morgan &
Claypool Publishers, 2009.

[6] A. Liotta, “The cognitive NET is coming,” IEEE Spectrum, vol. 50, no. 8,
pp. 26–31, Aug. 2013.

[7] J. Martinez and E. Ipek, “Dynamic multicore resource management: A
machine learning approach,” IEEE Micro, vol. 29, no. 5, pp. 8–17, Sep./Oct.
2009.

[8] R. Thomas, L. DaSilva, and A. MacKenzie, “Cognitive networks,” in Proc. 1st
IEEE Int. Symp. Dynamic Spectrum Access Netw., 2005, pp. 352–360.

4 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 15, NO. 1, JANUARY-JUNE 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

