
Design of an Optical Content-Addressable Parallel Processor with
Applications to Fast Searching and Information Retrieval *

Ahmed Louri
Department of Electrical and Computer Engineering

University of Arizona
Tucson, Arizona 85721

Associative processing based on content-addressable
memories has been argued to be the natural solution for
non-numerical information processing applications. Un-
fortunately, the implementation requirements of these
architectures using conventional electronic technology
have been very cost prohibitive, and therefore associa-
tive processors have not been realized. Optics has the
capability over electronics for directly supporting as-
ciative processing by providing economic and efficient
interconnects, massive parallelism, and high-speed pro-
cessing. This paper presents the principles of designing
an optical content-addressable parallel processor called
OCAPP, for the efficient support of parallel symbolic
computing. The architecture is designed to fully ex-
ploit optics advantages in interconnects and high-speed
operations, and is potentially very suitable for appli-
cations where the number of data sets to be operated
on is high. Several search and retrieval algorithms are
mapped onto OCAPP to illustrate its ability to support
parallel symbolic computing.

1 Introduction

Searching, retrieving, sorting and modifying symbolic
data can be significantly improved by the use of content-
addressable memory instead of location-addressability.
In a content-addressable memory data is addressed by
its contents[l]. An associative processor is a parallel
processing machine in which the data items are content-
addressable with the added capability to write in paral-
lel into words satisfying certain criterion. A well known
model of a basic associative architecture[2] which can
provide parallel search and update consists of a data
memory of n words with m bits per word, word select
logic, bit-slice select logic, a control memory for stor-
ing programs and control, a response register, multiple
match resolver, an output register, and some auxiliary
circuits for control. Each cell in the memory contains
storage for one data bit and comparison logic hardware.
The comparand register, C, is used to hold the key

TH0363-2/91/0000/0234$01 .OO Q 1991 IEEE 234

operand being searched for. The mask register, M, is
used to enable or disable the bit-slices to be involved in
the parallel comparison operations across all the words
of the memory array. An interrogating signal (a com-
bination of the comparand register and the mask regis
ter) is broadcast to all the cells for comparison. All bit
cells perform a comparison between the broadcast signal
and their values. The response register R identifies the
matching words. The multiple response resolver is used
to select one (it may be the first) of the matching words.
Although the model is straighforward, it has not been
largely used because of the difficulty and high cost of
implementing it in conventional electronic technology.
This paper argues that optics is, potentially, the ideal
medium to implement parallel processors based on the
associative model of computing.

Optical systems hold the promise for providing effi-
cient support for future parallel processing systems[3].
These include inherent parallelism, high spatial and
temporal bandwidths, and non-interfering communica,
tions. For associative processing, optics may be the
ideal solution to the fundamental problems faced by
electronic implementations, namely cell complexity, in-
terconnects latency, difficulty of implementing informa,
tion broadcasting and parallel access to the stored data.
Optics can alleviate the cell complexity by migrating
the implementation of wiring and logic into free-space.
The multi-dimensional nature of optical systems allows
for data storage and logic to be performed on two-
dimensional planes while the third dimension can be
used for interconnects. The high degree of connectivity
available in free-space space-invariant optical systems
(lo6 to 1@), and the ease with which optical signals
can be expanded (which allows for signal broadcasting)
and combined (which allows for signal funneling) can
also be exploited to solve the interconnects problems[4].
Moreover, optical and electro-optical systems can offer
a considerable storage capacity and parallel access than
do pure electronic systems.
*
This research was supported by an
NSF Grant No. MIP - 8909216.

2 Optical Content-Addressable
Parallel Processor: OCAPP

In figure 1 an organizational structure for an optical
content-addressable parallel processor called OCAPP
is proposed. The architecture is organized in a
modular fashion, and consists of a selection unit, a
match/compare unit, a response unit, an output unit,
and a control unit. The architecture is developed to
meet four goals, namely: (1) exploitation of maximum
parallelism; (2) amenability to optical implementation
with existing devices; (3) modular design in that it can
be scalable to bigger problems; and (4) ability to effi-
ciently implement information retrieval, and symbolic
computations.

The selection unit is comprised of (1) a storage array
of n words, each m bits long (in actuality, the storage
array capacity is n x 2m, since each bit position is com-
prised of a true bit wij and its complement U i j) ; and
(2) word and bit-slice enable logic to enable/disable the
words and/or the bit-slices that participate in the match
operation, and reset the rest. The match/compare unit
(shown in fig.2) contains a (1) 1 x m interrogation reg-
ister I; (2) logic hardware to perform parallel bitwise
comparison between the bits of the interrogation regis-
ter and the enabled bits of the storage array; (3) two
n x 1 working registers, G and L, which are used for mag-
nitude comparisons (to be explained later); (4) a n x 1
response register R for displaying the result of the com-
parison; and (5) a single indicator bit called the match
detector MD, which indicates whether or not there is
any matching words. This unit allows comparison of a
single operand stored in the interrogation register and
the words stored in the storage array. The I register
is a combination of the comparand register C and the
mask register M as shown in table 1. As such, it holds
the operand (depending on masking information if any)
being searched for or being compared with.

The response unit is responsible for selecting one or
several matching words. It comprises several scratch-
pad registers and a priority circuit for selecting the first
matching word. Depending on program control, the out-
put of the response unit is routed either to the output
unit for outputting the result or fed back to the selection
unit for further processing of the matching words. All
units are under the supervision of a conventional con-
trol unit with conventional storage (eg., a local RAM)
which stores the program instruction. Its role is to
load/unload the storage array, set/rest various registers
such as the I, R, G and L of the match/compare unit,
enable/disable memory words, perform conditional in-
structions, monitor the MD bit, and test program ter-
mination. In what follows, we describe the implemen-
tation of several parallel symbolic as well as numerical
algorithms on the OCAPF! in order to show its use and
processing benefits.

Table 1: Formulation of the interrogation register

Search bit cj I Mask bit mj I Interrogation bits Ij I,

1

The entry I j& = 11 means that no comparison is per-
formed at that bit position for all words.

3 Parallel Search Algorithms on
OCAPP

We classify search operations as basic and compound
operations. A basic search operation is one which can
be completed in one sweep over all the bit-slices of the
storage array. It does not involve any feedback process
ing. A compound search operation requires a feedback
from the response unit to the selection unit. As a con-
sequence, it takes more than one sweep over the storage
array to complete.

3.1 Parallel Algorithms for Basic Search
Operations on OCAPP

In what follows, we denote a memory word as Wi =
(wimwim-l ... wil) where wij is the jth bit cell of
the word Wi. We denote the jth bit-slice by Bj =
(w l j ~ j . . . wnj), which is made up of the jth bit of ev-
ery word in the storage array. The interrogation and
response registers are denoted by I = ImIm-1. . . I1,
and R = RlRa. . . & respectively. The comparand
word (search argument) and the mask register words
are denoted by C = (c m c m - l . . . c l) , and M =
(mmmm-i . . . ml) .

3.1.1 Equivalence Search

In this type of search, the memory is partitioned ac-
cording to the magnitude of the search word C into two
sets, namely, words which are equal to C and words
which are not. The equality and masked search oper-
ations can be implemented by a bitwise match. For
equality match all the bits of the search word need to
be matched, whereas for the masked search, only a sub-
set of the bits of the search word is compared with the
respective bits of the memory words. For mj = 0 means
that cj is not masked, while mj = 1 means cj is masked.
These two search modes can be combined as shown in
Table 1.

Given a search word C, a bit match denoted by bij

235

on the jth cell of the ith word is given by:

bj j = (1, A wij) V (4 A aj) (exclusive-and) (1)

where the symbols A, V, and the bar (-) denote the
logical AND, logical OR and logical NOT respectively.
Now the exact matchingof memory word Wi with search
argument C requires the logical product of the bits bij
for j = 1,. . . , m, therefore:

j =m

& = A bij = bim A bim-1 A . . . A bil. (2)
j = 1

where A denotes a logical AND over all bits. The above
equation indicates that matching words in memory will
be flagged by having their corresponding R bit set to
one, and all mismatches will have their R bits set to
zero. Equations 1 and 2 are space-invariant and can be
implemented in bit-parallel, word-parallel, and there-
fore, all 4 s for i = 1,. . . , n, are computed at the same
time with a single access to the storage array.

3.1.2 Threshold Search

This mode of search partitions the memory according
to the magnitude of the search word C into three sets,
namely words which are equal to C, words which are
less than C, and words which are greater than C. The
result of the search is stored in the three registers of the
response unit, namely R, G and L. Initially, all memory
words are made active by making control registers RGL
= 100. The memory is scanned from the m a t signifi-
cant to the least significant bit position by enabling a
single bit-slice at a time. When the comparand bit cj
is one, we select all active memory words with wij = 0
as “less than” by setting their corresponding bit posi-
tion RGL = 001. These words are then disabled from
further comparisons (the disabling process will be ex-
plained later). Similarly, when cj = 0, we select all
active memory words with Wij = 1 a8 “greater than” by
setting their corresponding bit position RGL = 010, and
then disable them from further processing. At the end
of the last bit position, words still in the state RGL =
100 are equal to the comparand, words in the state RGL
= 010 are greater than the comparand, and words in the
state RGL = 001 are less than the comparand. It is im-
portant to note that, even though we are scanning the
memory from most significant bit to least significant bit,
the search process can be terminated any time there are
no matching words at a given bit position (4. = 0 for
all i = 1,. . . , n). Such a condition is easily detectable
by checking the MD bit.

3.1.3 Extrema Search

This type of search refers to finding the maximum (or
minimum) of a set of (or all) memory words. We con-
sider first the search for maximum.

A . Mazimum Seamh
To find the maximum, we scan memory words from

the most to the least significant bit positions. As we
scan the bit-slices, we determine if any of the enabled
words have a one in the current bit position. If we find
some, we disable all those words that do not have a one
in this position. If none of the words at the current po-
sition possess a one, we do nothing. At any given time,
all remaining candidates are equal as far as we have
examined them, because for every bit position either
everybody had a zero in that bit position, or when-
ever some words have ones, we disable the ones with
zeros. Therefore, at bit position j, enabled words with
wjj = 1 are larger than enabled words with wij = 0.
Since we are seeking the maximum, we disable the ones
with wij = 0. This process is repeated until we exhaust
all bit positions at which time the maximum word will
be indicated by Rj = 1.
B. Minimum Seamh

The search for the minimum is very similar to the
search for the maximum except that the I register is
initially loaded with zeros and that if any enabled word
has a zero in the current bit position (There exists a
memory word Wj such that its corresponding R, = l),
we disable the words with a one in the current bit p-
sition (& = 0). These words are bound to be greater
than the minimum sought. The process is repeated until
we exhaust all bits of the enabled words. The minimum
value will also be indicated by a one in register R.

3.2 Parallel Algorithms for Compound
Search Operations on OCAPP

3.2.1 Double Limits Search (Between and Out-
side Limits)

Given two numbers called HIGH and LOW, the dou-
ble limits search consists of finding those words that
are between this limits and/or words that are outside
these limits. This gives rise to eight different searches
which can be accomplished in a very similar manner.
Let us consider the between limit search. Given the
two numbers HIGH and LOW, we wish to find those
words that are greater than LOW but less than HIGH
namely, find all Wi such that LOW < Wj < HIGH.
We can accomplish this search by using the magnitude
comparison search as follows. First, we determine the
words that are less than the comparand HIGH. These
words will be indicated by a one in the L register. We
then disable all other words except the ones that are
less than HIGH, and perform another threshold search
using the comparand LOW. After the second search,
words that are less than HIGH and greater than LOW
will be marked with a one in the G register, which could
be routed to the output unit for outputting the search
result.

236

3.2.2 Adjacency Search:

To find the word that is next-above the comparand (the
smallest word larger than the comparand), we search for
all words that are larger than the comparand and then
select their minimum. Similarly, to find the word that
is next-below the comparand (the largest word smaller
than the comparand), we search for all words less than
the comparand and select their maximum.

The search for the largest word smaller that the com-
parand (next-below search) can be carried out by a s i m
ilar algorithm as the one above. In this case, step two
of the next-above algorithm is replaced by a search for
words that are less than the comparand, and step four
is replaced by a maximum search.

3.2.3 Ordered Retrieval (Sorting)

The sorting or ordered retrieval of a set of data can be
achieved by performing the extrema search repeatedly
until all the data are retrieved. For the ascending order
retrieval, we enable the memory words to be sorted, and
determine their minimum (using the minimum search
operation). We output the obtained minimum value
and disable it from the storage array. We repeat these
steps until we retrieve (in ascending order) all the en-
abled words. For descending order retrieval, we select
the maximum value at each step.

4 Optical Implementation
The optical components required to implement OCAPP
can be divided into (1) logic elements, (2) storage el-
ements, and (3) information transfer elements (or in-
terconnects). For optical logic and storage, many ap-
proaches are being investigated. One approach is the
adaptation of the spatial light modulator (SLM) tech-
nology to optical logic[5]. Another approach for red-
izing optical components capable of performing logic,
is to optimize the device from the beginning for digital
operations. The recent emergence of the quantum-well
self-electrooptic effect device (SEED) and its derivatives
(S-SEED, T-SEED, D-SEED) is one such a product[6].
The SEED devices can be used to realize both logic op-
erations such as NOR, OR, AND, NAND, etc. as well
as for storage such as S R latches[6]. Optical resonators
are another family under this approach intended for op-
tical logic. Two similar bistable devices, etalons, and
interference filters both based on the Fabry-Perot res-
onator are being actively pursued[7]. All data move-
ments and information transfer in OCAPP are space-
invariant which may render their implementation eas-
ier. Classical optical components such as lenses, mir-
rors, beam splitters, holographic deflectors, and delay
elements are most likely to be used for this purpm[8].
In addition, halfwave plates, shutters, and masks may
be used for dynamic routing(91.

4.1 A Modular Implement at ion of
OCAPP

The implementation of this first version will make use
of the SEED device operating as a NOR gate for opti-
cal logic, and of the SSEED device operating as a S R
latch for storage[6]. As described earlier, the optical
processor can be constructed from several units: the se-
lection unit, the match/compare unit, the response unit,
the output unit, and the control unit. In what follows,
we describe the optical implementation (architectural
rather than experimental setup) of each of these units.
Details of routing and imaging have been omitted.

4.2 The Optical Selection Unit
The optical selection unit of Fig.3 is composed of a stor-
age array which consists of a 2-D n x m array of clocked
SSEED devices (each entry in the array at position i , j
has two incoming bits S, R and two outgoing bits wij,
t&j), a n x 1 word register A which serves at setting and
resetting data words in the storage array, a 1 x (m + 1))
bit-slice loading register B for loading a single bit-slice
of the storage array. The first bit Bo and its comple-
ment are called set-E and reset-E respectively, since
they are used for setting and resetting the n x 1 enable
register E which is used for the matching process (to be
explained below). Memory words are disabled through
the n x 1 NOR gate array, representing the D register.
The D register can be loaded from R, G or L registers.
In addition, the E register can also be reset from the
priority register P of the response unit (to be explained
below).

To allow a memory word Wi in participating in the
matching process, its corresponding bit Ei in the E reg-
ister must be set high. Similarly, to disallow a memory
word wi from participating in the matching process, its
corresponding bit Ei in the E register must be made
low. To enable/disablejhe entire memory words, the
set-E/reset-E bits (&/Bo) are spread out vertically and
broadcast to all the &,/reset ports of E. To selectively
disable memory words whose R, or G or L bits are not
asserted (R= 0, or G = 0 or L = 0), requires the routing
of the appropriate register (R, G, or L) to the NORgate
array D. The output of D (which represents the com-
plement of the routed register) is imaged onto the reset
ports of register E. Thus a low bit R, of the R register
will disable the i-th bit of the E register, which in turn
disables memory word Wi from participating in further
comparisons.

4.3 The Optical Match/Compare Unit
This unit performs exact match, and magnitude com-
parison searches between the interrogation register I and
words of the storage array. As shown in Fig.4, It con-
tains several SEED arrays operating as NOR gate ar-

237

rays, and three registers, namely the response register,
R, the greater than register G, and the less than regis-
ter L. Parallel comparison takes place between memory
words emanating from the storage array and the inter-
rogation register I. A match at bit W i j is detected by an
exclusive-and principle as indicated in Eq.1. For that,
register I needs to be spread out vertically so that each
bit Ij impinges on one port of the NOR gates of the j-th
column of the array, while data bits wij impinge on the
second port of the NOR gates of the same j-th column.
Matches between Ij and W i j are reported in bit R, of
the R register. Otherwise, the G and L registers indi-
cate the relative magnitude. The contents of R , G, and
L are routed to the response unit as well as fed back
to the selection unit. The R register bits are logically
ORed to form the Match Detector (MD) bit. The MD
flip-flop indicates if there is any match between I and
memory words.

4.4 The Optical Response Unit
The response unit, contains a combinational priority cir-
cuit, and a prioriby register P for indicating the first
matching word in memory (It may also contain few
scratchpad registers for temporary storage). The pri-
ority circuit allows only the first responder (the first
memory word Wi whose R, is one) to pass to the prior-
ity register P. The priority circuit can be implemented
using several stages of the NOR gate arrays in the form
of a binary tree with space-invariant interconnections
between them. Contents of the P register are routed to
the output unit, and also fed back to the selection unit.

4.5 The Optical Output Unit

The output unit outputs memory word whose corre-
sponding bit in the priority register P, R, G or L is
set to one (Fig.5). These latter registers are routed to
a n x 1 NOR gate array, denoted by N in Fig.5, whose
sole purpose is to invert their values. Each bit Ni of N
is logically NORed with memory word Wi using a 2-D
NOR gate array. Next, each column of the NOR gate
array is logically ORed to form output bit Oi of the
output register. This latter could be a photosensitive
device which only detects the presence of light and out-
puts electrical signals, or a 1-D array of SEED devices
acting as OR gates, and outputting optical signals. It
should be noted that parallel readout of selected mem-
ory words is also achievable by replacing P with a 2-D
output device and eliminating the OR function.

5 Conclusions
This paper presented the principles and initial design
concepts of an associative architecture that matches
well with optics advantages, and therefore is highly

238

amenable to optical implementation. The architecture
relies heavily on the use of space-invariant interconnec-
tions, optical signal broadcasting and funneling (com-
bining), and the simultaneous application of the same
operation to many data points (SIMD mode of com-
puting). The motivations behind this is the ease with
which these operations can be realized with optics. A
representative set of search algorithms have been pre-
sented to show the use and merits of the architecture.
These algorithms are key components which occur in
large computing tasks. It is important to note that
these fundamental search algorithms are implemented
on the optical architecture with an execution time inde-
pendent of the problem size (the number of words to be
processed). This indicates that the architecture would
be best suited to applications where the number of data
sets to be operated on is high.

References
T. Kohonen, Content-addressable memories,
Springer-Verlag, 1980.

C. C. Foster, Content Addressable Parallel Proces-
sors, Nostrand Reinhold, 1976.

A. Louri, “3-D optical architecture and data-parallel
algorithms for massively parallel computing,’’ IEEE
MICRO, April 1991.

P. B. Berra, A. Ghafoor, M. Guizani, S . J.
Marcinkowski, and P. A. Mitkas, “Optics and super-
computing,” Proceedings of the IEEE, vol. 77, pp.
1797 - 1815, Dec. 1989.

J. A. Neff, R. A. Athale, and S. H. Lee, “TWG
dimensional spatial light modulators: a tutorial,”
Proceedings of the IEEE, vol. 78, pp. 836 - 855, May
1990.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J . E.
Henry, J. E. Cunningham, and L. M. F. Chirovsky,
“Symmetric self-electrooptic effect device: optical
set-reset latch, differential logic gate, and differ-
ential modulator/detector,” IEEE J. of Quantum
Electron., vol. 25, pp. 1928 - 1936, Aug. 1989.

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use
of a single non-linear Fabry-Perot etalon as optical
logic gate,” Appl. Phys. Lett., vol. 44, pp. 172 - 174,
Jan. 1984.

A. W. Lohmann, “What classical optics can do for
the digital optical computer,” Applied Optics, vol.
25, no. 10, pp. 1543 - 1549, 15 May 1986.

A. Hartmann and S. Redfield, “Design sketches for
optical crossbar switches intended for large-scale
parallel processing applications,” Optical Engineer-
ing, vol. 28, no. 4, pp. 315 - 328, May 1989.

I 9 I

1-D vctor d optical data
(n x l d u b i o)

Fig. 1. A schematic organization of the optical content-addressable parallel processor : OCAPP.

M T C H
DETECTOR BIT

Fig. 2. Organization of the matchkompare unit.

E

Fig. 3. Optical Implementation of the selection unit.
N

NOR gal. m y

cpral adn(on unit

N : (n x 1)amy of optical NOR gater

Fig. 5. Optical implementation of the output unit.

239

rr

