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Associative processing based on content-addressable 
memories has been argued to  be the natural solution for 
non-numerical information processing applications. Un- 
fortunately, the implementation requirements of these 
architectures using conventional electronic technology 
have been very cost prohibitive, and therefore associa- 
tive processors have not been realized. Optics has the 
capability over electronics for directly supporting as- 
ciative processing by providing economic and efficient 
interconnects, massive parallelism, and high-speed pro- 
cessing. This paper presents the principles of designing 
an optical content-addressable parallel processor called 
OCAPP, for the efficient support of parallel symbolic 
computing. The architecture is designed to fully ex- 
ploit optics advantages in interconnects and high-speed 
operations, and is potentially very suitable for appli- 
cations where the number of data sets to be operated 
on is high. Several search and retrieval algorithms are 
mapped onto OCAPP to illustrate its ability to support 
parallel symbolic computing. 

1 Introduction 

Searching, retrieving, sorting and modifying symbolic 
data can be significantly improved by the use of content- 
addressable memory instead of location-addressability. 
In a content-addressable memory data is addressed by 
its contents[l]. An associative processor is a parallel 
processing machine in which the data items are content- 
addressable with the added capability to write in paral- 
lel into words satisfying certain criterion. A well known 
model of a basic associative architecture[2] which can 
provide parallel search and update consists of a data 
memory of n words with m bits per word, word select 
logic, bit-slice select logic, a control memory for stor- 
ing programs and control, a response register, multiple 
match resolver, an output register, and some auxiliary 
circuits for control. Each cell in the memory contains 
storage for one data bit and comparison logic hardware. 
The comparand register, C, is used to hold the key 
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operand being searched for. The mask register, M, is 
used to enable or disable the bit-slices to be involved in 
the parallel comparison operations across all the words 
of the memory array. An interrogating signal (a com- 
bination of the comparand register and the mask regis 
ter) is broadcast to all the cells for comparison. All bit 
cells perform a comparison between the broadcast signal 
and their values. The response register R identifies the 
matching words. The multiple response resolver is used 
to select one (it may be the first) of the matching words. 
Although the model is straighforward, it has not been 
largely used because of the difficulty and high cost of 
implementing it in conventional electronic technology. 
This paper argues that optics is, potentially, the ideal 
medium to implement parallel processors based on the 
associative model of computing. 

Optical systems hold the promise for providing effi- 
cient support for future parallel processing systems[3]. 
These include inherent parallelism, high spatial and 
temporal bandwidths, and non-interfering communica, 
tions. For associative processing, optics may be the 
ideal solution to  the fundamental problems faced by 
electronic implementations, namely cell complexity, in- 
terconnects latency, difficulty of implementing informa, 
tion broadcasting and parallel access to the stored data. 
Optics can alleviate the cell complexity by migrating 
the implementation of wiring and logic into free-space. 
The multi-dimensional nature of optical systems allows 
for data storage and logic to be performed on two- 
dimensional planes while the third dimension can be 
used for interconnects. The high degree of connectivity 
available in free-space space-invariant optical systems 
(lo6 to 1@), and the ease with which optical signals 
can be expanded (which allows for signal broadcasting) 
and combined (which allows for signal funneling) can 
also be exploited to solve the interconnects problems[4]. 
Moreover, optical and electro-optical systems can offer 
a considerable storage capacity and parallel access than 
do pure electronic systems. 
* 
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2 Optical Content-Addressable 
Parallel Processor: OCAPP 

In figure 1 an organizational structure for an optical 
content-addressable parallel processor called OCAPP 
is proposed. The architecture is organized in a 
modular fashion, and consists of a selection unit, a 
match/compare unit, a response unit, an output unit, 
and a control unit. The architecture is developed to 
meet four goals, namely: (1) exploitation of maximum 
parallelism; (2) amenability to optical implementation 
with existing devices; (3) modular design in that it can 
be scalable to  bigger problems; and (4) ability to effi- 
ciently implement information retrieval, and symbolic 
computations. 

The selection unit is comprised of (1) a storage array 
of n words, each m bits long (in actuality, the storage 
array capacity is n x 2m, since each bit position is com- 
prised of a true bit wij and its complement U i j ) ;  and 
(2) word and bit-slice enable logic to enable/disable the 
words and/or the bit-slices that participate in the match 
operation, and reset the rest. The match/compare unit 
(shown in fig.2) contains a (1) 1 x m interrogation reg- 
ister I; (2) logic hardware to perform parallel bitwise 
comparison between the bits of the interrogation regis- 
ter and the enabled bits of the storage array; (3) two 
n x  1 working registers, G and L, which are used for mag- 
nitude comparisons (to be explained later); (4) a n x 1 
response register R for displaying the result of the com- 
parison; and ( 5 )  a single indicator bit called the match 
detector MD, which indicates whether or not there is 
any matching words. This unit allows comparison of a 
single operand stored in the interrogation register and 
the words stored in the storage array. The I register 
is a combination of the comparand register C and the 
mask register M as shown in table 1. As such, it holds 
the operand (depending on masking information if any) 
being searched for or being compared with. 

The response unit is responsible for selecting one or 
several matching words. It comprises several scratch- 
pad registers and a priority circuit for selecting the first 
matching word. Depending on program control, the out- 
put of the response unit is routed either to  the output 
unit for outputting the result or fed back to the selection 
unit for further processing of the matching words. All 
units are under the supervision of a conventional con- 
trol unit with conventional storage (eg., a local RAM) 
which stores the program instruction. Its role is to 
load/unload the storage array, set/rest various registers 
such as the I, R, G and L of the match/compare unit, 
enable/disable memory words, perform conditional in- 
structions, monitor the MD bit, and test program ter- 
mination. In what follows, we describe the implemen- 
tation of several parallel symbolic as well as numerical 
algorithms on the OCAPF! in order to  show its use and 
processing benefits. 

Table 1: Formulation of the interrogation register 

Search bit cj I Mask bit mj I Interrogation bits Ij I, 

1 

The entry I j& = 11 means that no comparison is per- 
formed at that bit position for all words. 

3 Parallel Search Algorithms on 
OCAPP 

We classify search operations as basic and compound 
operations. A basic search operation is one which can 
be completed in one sweep over all the bit-slices of the 
storage array. It does not involve any feedback process 
ing. A compound search operation requires a feedback 
from the response unit to the selection unit. As a con- 
sequence, it takes more than one sweep over the storage 
array to complete. 

3.1 Parallel Algorithms for Basic Search 
Operations on OCAPP 

In what follows, we denote a memory word as Wi = 
(wimwim-l ... wil) where wij is the jth bit cell of 
the word Wi. We denote the jth bit-slice by Bj = 
( w l j ~ j  . . . wnj),  which is made up of the jth bit of ev- 
ery word in the storage array. The interrogation and 
response registers are denoted by I = ImIm-1. .  . I1, 
and R = RlRa. .  . & respectively. The comparand 
word (search argument) and the mask register words 
are denoted by C = ( c m c m - l . .  . c l ) ,  and M = 
(mmmm-i . . . ml) .  

3.1.1 Equivalence Search 

In this type of search, the memory is partitioned ac- 
cording to the magnitude of the search word C into two 
sets, namely, words which are equal to  C and words 
which are not. The equality and masked search oper- 
ations can be implemented by a bitwise match. For 
equality match all the bits of the search word need to 
be matched, whereas for the masked search, only a sub- 
set of the bits of the search word is compared with the 
respective bits of the memory words. For mj = 0 means 
that cj is not masked, while mj = 1 means cj is masked. 
These two search modes can be combined as shown in 
Table 1. 

Given a search word C, a bit match denoted by bij  
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on the jth cell of the ith word is given by: 

bj j  = (1, A wij) V (4 A aj) ( exclusive-and ) (1) 

where the symbols A, V, and the bar ( - )  denote the 
logical AND, logical OR and logical NOT respectively. 
Now the exact matchingof memory word Wi with search 
argument C requires the logical product of the bits bij 
for j = 1,. . . , m, therefore: 

j =m 

& = A bij = bim A bim-1 A . .  . A  bil. (2) 
j = 1  

where A denotes a logical AND over all bits. The above 
equation indicates that matching words in memory will 
be flagged by having their corresponding R bit set to 
one, and all mismatches will have their R bits set to 
zero. Equations 1 and 2 are space-invariant and can be 
implemented in bit-parallel, word-parallel, and there- 
fore, all 4 s  for i = 1,. . . , n, are computed at the same 
time with a single access to the storage array. 

3.1.2 Threshold Search 

This mode of search partitions the memory according 
to the magnitude of the search word C into three sets, 
namely words which are equal to C, words which are 
less than C, and words which are greater than C. The 
result of the search is stored in the three registers of the 
response unit, namely R, G and L. Initially, all memory 
words are made active by making control registers RGL 
= 100. The memory is scanned from the m a t  signifi- 
cant to  the least significant bit position by enabling a 
single bit-slice at a time. When the comparand bit cj 
is one, we select all active memory words with wij = 0 
as “less than” by setting their corresponding bit posi- 
tion RGL = 001. These words are then disabled from 
further comparisons (the disabling process will be ex- 
plained later). Similarly, when cj  = 0, we select all 
active memory words with Wij = 1 a8 “greater than” by 
setting their corresponding bit position RGL = 010, and 
then disable them from further processing. At the end 
of the last bit position, words still in the state RGL = 
100 are equal to  the comparand, words in the state RGL 
= 010 are greater than the comparand, and words in the 
state RGL = 001 are less than the comparand. It is im- 
portant to note that, even though we are scanning the 
memory from most significant bit to least significant bit, 
the search process can be terminated any time there are 
no matching words at a given bit position (4. = 0 for 
all i = 1,. . . , n). Such a condition is easily detectable 
by checking the MD bit. 

3.1.3 Extrema Search 

This type of search refers to finding the maximum (or 
minimum) of a set of (or all ) memory words. We con- 
sider first the search for maximum. 

A .  Mazimum Seamh 
To find the maximum, we scan memory words from 

the most to the least significant bit positions. As we 
scan the bit-slices, we determine if any of the enabled 
words have a one in the current bit position. If we find 
some, we disable all those words that do not have a one 
in this position. If none of the words at the current po- 
sition possess a one, we do nothing. At any given time, 
all remaining candidates are equal as far as we have 
examined them, because for every bit position either 
everybody had a zero in that bit position, or when- 
ever some words have ones, we disable the ones with 
zeros. Therefore, at bit position j, enabled words with 
wjj = 1 are larger than enabled words with wij = 0. 
Since we are seeking the maximum, we disable the ones 
with wij = 0. This process is repeated until we exhaust 
all bit positions at which time the maximum word will 
be indicated by Rj = 1. 
B. Minimum Seamh 

The search for the minimum is very similar to the 
search for the maximum except that the I register is 
initially loaded with zeros and that if any enabled word 
has a zero in the current bit position (There exists a 
memory word Wj such that its corresponding R, = l), 
we disable the words with a one in the current bit p- 
sition (& = 0). These words are bound to be greater 
than the minimum sought. The process is repeated until 
we exhaust all bits of the enabled words. The minimum 
value will also be indicated by a one in register R. 

3.2 Parallel Algorithms for Compound 
Search Operations on OCAPP 

3.2.1 Double Limits Search (Between and Out- 
side Limits) 

Given two numbers called HIGH and LOW, the dou- 
ble limits search consists of finding those words that 
are between this limits and/or words that are outside 
these limits. This gives rise to eight different searches 
which can be accomplished in a very similar manner. 
Let us consider the between limit search. Given the 
two numbers HIGH and LOW, we wish to find those 
words that are greater than LOW but less than HIGH 
namely, find all Wi such that LOW < Wj < HIGH. 
We can accomplish this search by using the magnitude 
comparison search as follows. First, we determine the 
words that are less than the comparand HIGH. These 
words will be indicated by a one in the L register. We 
then disable all other words except the ones that are 
less than HIGH, and perform another threshold search 
using the comparand LOW. After the second search, 
words that are less than HIGH and greater than LOW 
will be marked with a one in the G register, which could 
be routed to the output unit for outputting the search 
result. 
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3.2.2 Adjacency Search: 

To find the word that is next-above the comparand (the 
smallest word larger than the comparand), we search for 
all words that are larger than the comparand and then 
select their minimum. Similarly, to find the word that 
is next-below the comparand (the largest word smaller 
than the comparand), we search for all words less than 
the comparand and select their maximum. 

The search for the largest word smaller that the com- 
parand (next-below search) can be carried out by a s i m  
ilar algorithm as the one above. In this case, step two 
of the next-above algorithm is replaced by a search for 
words that are less than the comparand, and step four 
is replaced by a maximum search. 

3.2.3 Ordered Retrieval (Sorting) 

The sorting or ordered retrieval of a set of data can be 
achieved by performing the extrema search repeatedly 
until all the data are retrieved. For the ascending order 
retrieval, we enable the memory words to be sorted, and 
determine their minimum (using the minimum search 
operation). We output the obtained minimum value 
and disable it from the storage array. We repeat these 
steps until we retrieve (in ascending order) all the en- 
abled words. For descending order retrieval, we select 
the maximum value at each step. 

4 Optical Implementation 
The optical components required to implement OCAPP 
can be divided into (1) logic elements, (2) storage el- 
ements, and (3) information transfer elements (or in- 
terconnects). For optical logic and storage, many ap- 
proaches are being investigated. One approach is the 
adaptation of the spatial light modulator (SLM) tech- 
nology to optical logic[5]. Another approach for red- 
izing optical components capable of performing logic, 
is to optimize the device from the beginning for digital 
operations. The recent emergence of the quantum-well 
self-electrooptic effect device (SEED) and its derivatives 
(S-SEED, T-SEED, D-SEED) is one such a product[6]. 
The SEED devices can be used to realize both logic op- 
erations such as NOR, OR, AND, NAND, etc. as well 
as for storage such as S R  latches[6]. Optical resonators 
are another family under this approach intended for op- 
tical logic. Two similar bistable devices, etalons, and 
interference filters both based on the Fabry-Perot res- 
onator are being actively pursued[7]. All data move- 
ments and information transfer in OCAPP are space- 
invariant which may render their implementation eas- 
ier. Classical optical components such as lenses, mir- 
rors, beam splitters, holographic deflectors, and delay 
elements are most likely to be used for this purpm[8]. 
In addition, halfwave plates, shutters, and masks may 
be used for dynamic routing(91. 

4.1 A Modular Implement at ion of 
OCAPP 

The implementation of this first version will make use 
of the SEED device operating as a NOR gate for opti- 
cal logic, and of the SSEED device operating as a S R  
latch for storage[6]. As described earlier, the optical 
processor can be constructed from several units: the se- 
lection unit, the match/compare unit, the response unit, 
the output unit, and the control unit. In what follows, 
we describe the optical implementation (architectural 
rather than experimental setup) of each of these units. 
Details of routing and imaging have been omitted. 

4.2 The Optical Selection Unit 
The optical selection unit of Fig.3 is composed of a stor- 
age array which consists of a 2-D n x m array of clocked 
SSEED devices (each entry in the array at position i , j  
has two incoming bits S, R and two outgoing bits wij, 
t&j), a n x 1 word register A which serves at setting and 
resetting data words in the storage array, a 1 x (m + 1)) 
bit-slice loading register B for loading a single bit-slice 
of the storage array. The first bit Bo and its comple- 
ment are called set-E and reset-E respectively, since 
they are used for setting and resetting the n x 1 enable 
register E which is used for the matching process (to be 
explained below). Memory words are disabled through 
the n x 1 NOR gate array, representing the D register. 
The D register can be loaded from R, G or L registers. 
In addition, the E register can also be reset from the 
priority register P of the response unit (to be explained 
below). 

To allow a memory word Wi in participating in the 
matching process, its corresponding bit Ei in the E reg- 
ister must be set high. Similarly, to disallow a memory 
word wi from participating in the matching process, its 
corresponding bit Ei in the E register must be made 
low. To enable/disablejhe entire memory words, the 
set-E/reset-E bits (&/Bo) are spread out vertically and 
broadcast to all the &,/reset ports of E. To selectively 
disable memory words whose R, or G or L bits are not 
asserted (R= 0, or G = 0 or L = 0), requires the routing 
of the appropriate register (R, G, or L) to the NORgate 
array D. The output of D (which represents the com- 
plement of the routed register) is imaged onto the reset 
ports of register E. Thus a low bit R, of the R register 
will disable the i-th bit of the E register, which in turn 
disables memory word Wi from participating in further 
comparisons. 

4.3 The Optical Match/Compare Unit 
This unit performs exact match, and magnitude com- 
parison searches between the interrogation register I and 
words of the storage array. As shown in Fig.4, It con- 
tains several SEED arrays operating as NOR gate ar- 
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rays, and three registers, namely the response register, 
R, the greater than register G, and the less than regis- 
ter L. Parallel comparison takes place between memory 
words emanating from the storage array and the inter- 
rogation register I. A match at bit W i j  is detected by an 
exclusive-and principle as indicated in Eq.1. For that, 
register I needs to  be spread out vertically so that each 
bit Ij impinges on one port of the NOR gates of the j-th 
column of the array, while data bits wij impinge on the 
second port of the NOR gates of the same j-th column. 
Matches between Ij and W i j  are reported in bit R, of 
the R register. Otherwise, the G and L registers indi- 
cate the relative magnitude. The contents of R , G, and 
L are routed to  the response unit as well as fed back 
to the selection unit. The R register bits are logically 
ORed to form the Match Detector (MD) bit. The MD 
flip-flop indicates if there is any match between I and 
memory words. 

4.4 The Optical Response Unit 
The response unit, contains a combinational priority cir- 
cuit, and a prioriby register P for indicating the first 
matching word in memory (It may also contain few 
scratchpad registers for temporary storage). The pri- 
ority circuit allows only the first responder (the first 
memory word Wi whose R, is one) to pass to the prior- 
ity register P. The priority circuit can be implemented 
using several stages of the NOR gate arrays in the form 
of a binary tree with space-invariant interconnections 
between them. Contents of the P register are routed to 
the output unit, and also fed back to the selection unit. 

4.5 The Optical Output Unit 

The output unit outputs memory word whose corre- 
sponding bit in the priority register P, R, G or L is 
set to one (Fig.5). These latter registers are routed to 
a n x 1 NOR gate array, denoted by N in Fig.5, whose 
sole purpose is to invert their values. Each bit Ni of N 
is logically NORed with memory word Wi using a 2-D 
NOR gate array. Next, each column of the NOR gate 
array is logically ORed to form output bit Oi of the 
output register. This latter could be a photosensitive 
device which only detects the presence of light and out- 
puts electrical signals, or a 1-D array of SEED devices 
acting as OR gates, and outputting optical signals. It 
should be noted that parallel readout of selected mem- 
ory words is also achievable by replacing P with a 2-D 
output device and eliminating the OR function. 

5 Conclusions 
This paper presented the principles and initial design 
concepts of an associative architecture that matches 
well with optics advantages, and therefore is highly 
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amenable to optical implementation. The architecture 
relies heavily on the use of space-invariant interconnec- 
tions, optical signal broadcasting and funneling (com- 
bining), and the simultaneous application of the same 
operation to many data points (SIMD mode of com- 
puting). The motivations behind this is the ease with 
which these operations can be realized with optics. A 
representative set of search algorithms have been pre- 
sented to show the use and merits of the architecture. 
These algorithms are key components which occur in 
large computing tasks. It is important to note that 
these fundamental search algorithms are implemented 
on the optical architecture with an execution time inde- 
pendent of the problem size (the number of words to be 
processed). This indicates that the architecture would 
be best suited to applications where the number of data 
sets to be operated on is high. 

References 
T. Kohonen, Content-addressable memories, 
Springer-Verlag, 1980. 

C. C. Foster, Content Addressable Parallel Proces- 
sors, Nostrand Reinhold, 1976. 

A. Louri, “3-D optical architecture and data-parallel 
algorithms for massively parallel computing,’’ IEEE 
MICRO, April 1991. 

P. B. Berra, A. Ghafoor, M. Guizani, S .  J.  
Marcinkowski, and P. A. Mitkas, “Optics and super- 
computing,” Proceedings of the IEEE, vol. 77, pp. 
1797 - 1815, Dec. 1989. 

J. A. Neff, R. A. Athale, and S. H. Lee, “TWG 
dimensional spatial light modulators: a tutorial,” 
Proceedings of the IEEE, vol. 78, pp. 836 - 855, May 
1990. 

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J .  E. 
Henry, J. E. Cunningham, and L. M. F. Chirovsky, 
“Symmetric self-electrooptic effect device: optical 
set-reset latch, differential logic gate, and differ- 
ential modulator/detector,” IEEE J. of Quantum 
Electron., vol. 25, pp. 1928 - 1936, Aug. 1989. 

J. L. Jewell, M. C. Rushford, and H. M. Gibbs, “Use 
of a single non-linear Fabry-Perot etalon as optical 
logic gate,” Appl. Phys. Lett.,  vol. 44, pp. 172 - 174, 
Jan. 1984. 

A. W. Lohmann, “What classical optics can do for 
the digital optical computer,” Applied Optics, vol. 
25, no. 10, pp. 1543 - 1549, 15 May 1986. 

A. Hartmann and S. Redfield, “Design sketches for 
optical crossbar switches intended for large-scale 
parallel processing applications,” Optical Engineer- 
ing, vol. 28, no. 4, pp. 315 - 328, May 1989. 



I 9  I 

1-D vctor d optical data 
( n x l d u b i o )  

Fig. 1. A schematic organization of the optical content-addressable parallel processor : OCAPP. 
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Fig. 2. Organization of the matchkompare unit. 
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Fig. 3. Optical Implementation of the selection unit. 
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Fig. 5. Optical implementation of the output unit. 
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