
NBTI Aware Workload Balancing in Multi-core Systems

Jin Sun∗, Avinash Kodi†, Ahmed Louri∗, and Janet M. Wang∗
∗Department of Electrical and Computer Engineering, University of Arizona

1230 E. Speedway, Tucson, Arizona 85721, Email: {sunj,louri,wml}@ece.arizona.edu
†Department of Electrical and Computer Engineering, Russ College of Engineering and Technology, Ohio University

322D Stocker Center, Athens, Ohio 45701, Email: kodi@ohio.edu

Abstract—As device feature size continues to shrink, reliability
becomes a severe issue due to process variation, particle-induced
transient errors, and transistor wear-out/stress such as Negative
Bias Temperature Instability (NBTI). Unless this problem is
addressed, chip multi-processor (CMP) systems face low yields
and short mean-time-to-failure (MTTF). This paper proposes a
new design framework for multi-core system that includes device
wear-out impact. Based on device fractional NBTI model, we
propose a new NBTI aware system workload model, and develop
new dynamic tile partition (DTP) algorithm to balance workload
among active cores while relaxing stressed ones. Experimental
results on 64 cores show that by allowing a small number of
cores (around 10%)to relax in a short time period (10 second),
the proposed methodology improves CMP system yield. We use
the percentage of core failure to represent the yield improvement.
The new strategy improves the core failure number by 20 %, and
extend MTTF by 30% with little degradation in performance (less
than 6%).

I. INTRODUCTION
As device feature size continues to shrink, reliability be-

comes a severe issue due to process variation, particle-induced
transient errors, and transistor wear-out/stress such as the Neg-
ative Bias Temperature Instability (NBTI) that affects system
life-span. Typical strategies applied to the manufacture process
include regulating the voltage supply, controlling temperature
and monitoring frequency. The above measures have provided
robust designs for several technology generations ranging from
0.5 um to 0.10 um. However, as feature size continues to
shrink reaching the nanometer scale, these techniques will no
longer be suff cient in the nanometer regime [1][2][3]. The
extremely small device feature size makes process variation,
particle-induced transient errors, and device stress much more
challenging. Unless these issues are effectively addressed, chip
multi-processor (CMP) systems will face low yields and short
mean-time-to-failure (MTTF)[1].
A number of techniques have emerged recently to deal

with process variation and transient errors. These include
detecting and correcting transient defects occurred in memory
storage, using time-redudant computation (TRC), error cor-
rection codes (ECC), and dual or triple-modular redundancy
(DMR or TMR). Additional work focused on including design
tolerance for permanent faults such as NBTI using post-
manufacturing burn-in [1]. However, very little attention has
been paid to device stress and its impact on system life-span
and performance in the multi-core era. This paper proposes a

new design framework for multi-core system to include device
stress impact. It f rst introduces device fractional NBTI model,
and proposes a new NBTI aware system workload model. This
is followed by a new dynamic tile partition (DTP) algorithm
to balance workload for active cores while relaxing stressed
ones.
Device stress may happen after days of full workload

operation, and requires days to relax before recovering. Letting
the device completely wear-out will impact the system as
defective cores have to be removed from the pool of active
cores. Different from existing approaches [2][3] that focused
on long term stress using static NBTI models, we propose to
use fractional stress and recovery in the multi-core systems.
We model NBTI with regard to threshold voltage changes,
and then ref ect the threshold variations to timing degradation
of the core. By deploying a fractional NBTI model where
cores are partially stressed before complete wear-out, the
overall number of active cores will be much higher than
in the complete stressed out model. Base on the fractional
NBTI model, we propose a strategy where the cores have to
alternate between a full workload phase (when the core is
relaxed) and a light workload phase (when the core is stressed)
with high frequency of alternation between phases. Fig. 1
displays an example of 4 × 4 cores with difference workload
numbers based on NBTI model at one time point. The strategy

TP#0 TP#1

TP#2 TP#3

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

Fig. 1. An example of workload distribution on a 4 × 4 multi-core system

has shown good system yield improvement and extension of
MTTF with insignif cant penalty on system throughput, and
no impact on latency and traff c overhead. Specif cally, this
new contributions of this paper are: 1) a system NBTI stress

978-1-4244-2953-0/09/$25.00 ©2009 IEEE 833 10th Int'l Symposium on Quality Electronic Design

model, 2) a new Dynamic Tile Partitioning (DTP) algorithm,
3) a f rst insight into the relationship among core recovering
time, stress time and workload, and their impact on core life-
span. Experimental results on 64 cores show that by allowing
a small number of cores (10%)to relax in a short time period
(10 second), the proposed methodology improves CMP system
yield by reducing core failure percentage about 20 %, and
extend s MTTF by 30% with little degradation in performance
(less than 6%).
The remainder of this paper is organized as follows. Sec-

tion II introduces NBTI device and core model. Section III
describes workload balancing with DTP approach. Section IV
discusses experimental results. Finally, section V concludes
the paper.

II. NBTI MODEL FOR MULTI-CORE PERFORMANCE

As one of the main reliability issue, NBTI limits lifetime
in nano-scale integrated circuits. When PMOS is negatively
biased, the electrical f eld across gate oxide produces a com-
plicated electro-chemical reactions that consequently increases
PMOS threshold voltage over time. Manifesting itself in a
gradual manner, the impact of NBTI may take days and
months to affect timing and circuit delay and thus fail the
system. Recent research works have conf rmed that NBTI
is getting worse with further scaling starting from 90nm
technology[1][2][3].
According to [2], the widely different diffusivity of H2

in the oxide and polysilicon causes PMOS transistors to
alternate between stress and recovery. The recovery itself
consists of two steps, a fast recovery and a slow recovery.
Fig. 2 demonstrates the alternation of stress and recovery. In
general, recovery and stress period are fairly symmetric. We
use 10 second for each period. During the recovery stage,
the f rst 1 second, the device already recovers 90% of the
stress. the later 9 second recovers the rest 10%. The value
10 second per period comes from the sampling time of NBTI
sensors [5]. It has been reported as accurate enough to monitor
the NBTI introduced threshold voltage changes. The NBTI
compact device model follows the similar style as reported in
[3]. The stress model is derived as:

∆Vth = (Kv(T (t))(t − t0)
1

2 + ∆Vth0
1

2n)
2n

(1)

The recovery model can be written as:

∆Vth = Vth0(1 −
2ǫ +

√

ǫ2C(T (t))(t − t0)

2tox +
√

C(T (t))t
) (2)

However, we also consider the temperature changes with
regard to time. That is, we include the temperature dependency
on time in both coeff cient Kv and C. This inclusion is to
avoid inaccuracy when temperature changes with regard to
time. The changes in threshold voltage in turn affect timing
and power of the core. According to [4][6], gate delay model
considering threshold voltage may be described as a f rst-order
Taylor expansion. We extend this model to critical path delay
model. That is, the i-th critical path delay can be written as

di = di(Vth0, Leff) + (∂di/∂Vth)∆Vth (3)

Here the delay is modeled as Gaussian distribution with
di(Vth0, Leff) as the nominal delay value. For one single core,
we may have a number of critical paths. The worst case is the
critical path with the biggest variation. Hence,

∆dmax = min(max((∂di/∂Vth)∆Vth), 3σ) (4)

The bigger the delay variations, the less workload the core
should accept. We propose using the following percentage
model to relate delay variations with workload. Assume when
delay is at nominal value and has zero variation, the workload
is at 100% or 1. And at 3σ of the delay variation distribution,
the workload is at lowest, 0. Then the percentage of workload
is modeled as

workloaddelay = 1 − ∆dmax/3σ (5)

It is apparent that our concern is positive delay changes, or
delay is bigger than nominal value. Here, when ∆dmax is zero,
we have full workload. The opposite situation is that ∆dmax is
equal to 3σ. In this case, we have zero workload. The majority
workloads will lie in between these two extreme cases.
While Vth has little impact on dynamic power consumption,

it affects dramatically the leakage power. Using empirical
leakage power model, we have

Pleak = C0exp(−C1Leff − C2Vth) (6)

Substituting the f rst order pertubation model for Vth = Vth0+
∆Vth, this equation can be further written as

Pleak = C0exp(−C1Leff − C2Vth0)exp(−C2∆Vth) (7)

The normalized leakage power is def ned as

Pnleaki
=

Pleak

C0exp(−C1Leff − C2Vth0)
(8)

While these equations work for single transistor, for every gate
and every core, the total leakage power is simply the sum of
leakage power of all transistors in one gate or one core. That
is,

PleakTotal =

N
∑

k=1

Pnleaki
(9)

Again, we identify leakage extreme case comparing with its
3σleak value.

∆Pmax = min(PleakTotal, 3σleak) (10)

The impact on workload may be formulated as

workloadleakP = 1 − ∆Pmax/3σleak (11)

If we consider both delay and leakage power at the same time,
a simple model provides

workload = 0.5∗workloaddelay +0.5∗workloadleakP (12)

This model averages leakage and delay impact on workload.
Therefore, we have transitioned from single PMOS NBTI
model to workload intepretation. During this process, the
NBTI device model f rst provided its impact on threshold

voltage. Then we model the variation of threshold voltage
on system level delay and leakage power respectively. The
end result is the workload for each core in percentage (less
than 1). The workload value generated will be treated as upper
bound limit for each core. Note that NBTI impact on threshold
voltage changes with regard to time, so as the workload. That
is, at different time points, the workload upper bound for each
core would be different as well.

Threshold Voltage Changes

thV

Time

Stress Relax Stress Relax

10 s 10s 10s 10s

Fig. 2. NBTI PMOS Fractional Model with Both Stress and Relaxing Phases

III. NBTI AWARE WORKLOAD BALANCING
This section investigates the design methodology of work-

load and traff c balancing techniques considering NBTI. It con-
sists of three components: Dynamic Tile Partitioning (DTP),
task scheduling within each partition, DTP based workload
balancing and traff c load balancing. Based on workload
number suggested by NBTI system model, the new method
assigns cores into different partitions with comparative total
workload. Then in the presence of active f ows, the new
method determines the assignment scheduling for each core,
in order to ref ect the tasks of the f ows into particular cores
within the assigned partition. By introducing penalty table
for each router, the proposed method distributes traff c in the
network uniformly across the entire network to avoid overload
of some portion of the network.

A. Dynamic Tile Partitioning
The concept of Dynamic Tile Partitioning (DTP) is the key

to our proposed workload balancing framework. The purpose
of DTP is to spread out the tasks of different f ows across the
entire network. This helps to avoid the overstress on a small
portion of the network, and to further improve the eff ciency
and reliability of the entire multi-core system [7][8]. The basic
idea of tile partitioning is to organize all the cores into several
necessary partitions. The processing of tasks of a particular
f ow is restricted to an assigned partition, consisting of a
set of tiles physically adjacent to each other. Based on the
assigned workload numbers using NBTI system model, DTP
divides the cores into different tile partitions with comparative
performance measurements. Fig. 1 explains the concept of tile
partitioning with an example. The diagram shows a 4×4 tile-
based multi-core network which was partitioned into 4 tile
partitions. Each core in the grid is labeled with a workload

number. The cores in gray color represent the ones have
NBTI wear-out, whose workload numbers are denoted by low
values. DTP groups all the cores into several tile partitions
(distinguished by respective colors), in order to make sure the
sum of workload numbers within each partition has nearly the
same amount. In other words, each partition has (nearly) equal-
quantized workload. The example in Fig. 1 indicates that tile
partitions TP#0, TP#2 and TP#3 have identical total workload
numbers of 1.8, while the workload number of tile partition
TP#1 is 1.9, which is very close to those of other partitions.
Given the workload number Wi for the i-th core. Our objective
is to develop a partitioning scheme that, within each partition
the sum of included workload numbers has to be nearly the
same amount (of course all the elements in each partition must
be mutually connected). More precisely, if there are K parti-
tions C1, C2, · · ·, CK , the sum of all the workload numbers for
each partition is accordingly W

(1)
sum, W

(2)
sum, · · ·, W

(K)
sum, DTP

attempts to guarantee the values of all the W
(j)
sum’s have very

small differences. Or in other words, we need to minimize the
variance of sequence {W

(1)
sum, W

(2)
sum, · · ·, W

(K)
sum}.

The DTP algorithm could be implemented in the following
searching steps:
Step 1. Set a threshold, or tolerance value for the variance

of sequence {W (1)
sum, W

(2)
sum, · · ·, W

(K)
sum}. We call this tolerance

value σt, which is used for comparison during each searching
step.
Step 2. Start with an arbitrarily selected partitioning solution

(with connectivity guaranteed). Intuitively, we can start with
the uniform or symmetric grouping scheme.
Step 3. Compute the variance of this initialized grouping.

If it is smaller than the predetermined tolerance value σt, the
searching procedure is stopped. Otherwise, go to step 4.
Step 4. Give small adjustment to above grouping result,

and repeat N times randomly. We will obtain a set of newly
generated partitioning solutions. Compute the variance of se-
quence {W

(1)
sum, W

(2)
sum, · · ·, W

(K)
sum} for each newly generated

partitioning solution, and compare it with the tolerance value
σt. If the variance is smaller than σt, the searching procedure
is stopped. Otherwise, go to step 5.
Step 5. For all these N grouping results generated in step 4,

select the optimal one among these solutions (i.e. the grouping
solution having the smallest variance) and repeat step 4.
This is a heuristic searching procedure and thus adaptive

to the transient update in workload number as well as the
number of active f ows. In most situations, some of cores are
possibly under “quasi-defect” situations, such as overstressed
or suffering from transient errors. Under this situation, the
overstressed cores can not be assigned tasks at that moment.
On the other side, at a later time when they are released,
they may be available again. In this sense, the workload
number for a core in not a constant number but has to
be updated frequently. Another factor which inf uences the
result of DTP is the number of partitions to be organized.
The number of partitions is also a time-dependent parameter,
which is determined by the number of active f ows and the
number of available cores. At a particular point, given a

multi-core network with f xed workload numbers assigned and
determined partition numbers, DTP returns the best f tting
solution for tile grouping. The f nal solution of DTP is not
the global optimal or strict optimal solution, but a secondary
optimal or local optimal solution (due to the tolerance value
we predetermined). However, strict optimality is not necessary
in our case, since the eventual objective is to make all the
partitions distributed evenly. The general f ows of this DTP
algorithm can be described by following pseudocode (Fig. 3),
where the input parameter network represents a given tile-
based multi-core network with measured workload numbers,
parameter NP is the number of partitions to be organized,
and σt denotes the predetermined variance threshold.

initialize Initial_grouping Symmetric_grouping (network, NP)

Temp_ Compute_Variance (Initial_Grouping)

if Temp_ t

return (Initial_Grouping)

end if

while (true)

SC {Ø}

for i = 1:N

Temp_Grouping Perturbation (Initial_Grouping, i)

Boolean Connectivity Check_Connectivity (Temp_Grouping)

if Connectivity == NO

continue

else

return (Temp_Grouping)

end if

PUSH (SC, Temp_Grouping)

end if

Index Find_Min_Variance (SC)

Intial_Grouping SC (Index)

Temp_ Compute_Variance (Temp_Grouping)

if Temp_

end while

end for

t

Algorithm DTP (network, NP,)t

Fig. 3. The pseudocode for the Dynamic Tile Partitioning algorithm

After organizing the tiles into several necessary partitions,
the DTP algorithm has to further address the problem of
scheduling the cores within the desired partition to process
the assigned f ow tasks. In other words, we need to determine
which cores within this selected partition the task of a par-
ticular f ow will be assigned to. This is a well-studied task
scheduling problem and is discussed elaborately in a number
of literatures [9]-[13].
In general, a multi-core system is able to handle a limited

number of f ows in parallel. Tasks within a particular f ow,
however, may have dependencies among each other. The
precedence relationships among tasks prohibit the execution
of parallelism. Tasks from different f ows, on the other hand,
tend to have no dependency, or only few dependencies among
them. Thus a particular f ow is typically mapped into a chosen
tile partition and all the tasks of this f ow are scheduled to be
processed by cores within the partition. Therefore the number
of tile partitions depends on the number of currently active
f ows. Besides, the partition number is also restricted by the

number of available cores in the network. If the number of
currently active f ows is greater than the number of available
cores, f ows that have no partition assigned will be buffered in
the waiting list until one of the partitions becomes available.
Another buffering situation is that there are no idle cores
within the partition assigned for a particular f ow.
The update of partition number takes places mainly at two

moments. The f rst moment is when a new f ow comes in.
Here, a f ow becomes available, is detected by the system and
is taken into account for scheduling immediately to improve
the utilization of the schedule. If there are available cores in the
system, the number of required partitions will be increased and
the cores in the network will also be re-organized according to
the updated partition number. Otherwise the new f ow should
be buffered in the waiting list until the relaxation of certain
partition. The second important moment is the time when
certain partition f nishes processing all the task of the assigned
f ow. Since the total expected running times of the f ows
assigned to each partition may differ much, a schedule of one
partition may run out of things to do before other partitions
complete their assigned tasks. The relaxed cores within this
partition must be considered for new assignments in order
to prevent waste of time for waiting. The partition may be
re-scheduled for the newly coming f ow (if there are f ows
existing in the waiting list); or the cores in the partition shall
be re-arranged to join the cores in other partitions for task
processing (if the waiting list in the system is empty). Both
of these two policies of partition number updating are for the
purpose of enhancing the utilization of the processing system
and balancing the networking workload.
As long as the number of clusters assigned for the f ows has

been changed, the DTP algorithm will be performed again and
the cores in the network will be re-partitioned for processing.
Furthermore, the cores within each partition will also be re-
arranged by the scheduling algorithm for task assignments.
The previous schedule will be replaced by the newly generated
schedule. The previous scheduling of the unexecuted tasks
assigned in this partition will be eliminated. However, for the
tasks that are currently under processing, we could not disturb
the corresponding processing elements. Instead they will be
left to f nish processing the assigned tasks and re-arranged
after the completion of execution. When re-scheduling the
remaining tasks of the f ows, we need to delete the task nodes
that have been f nished already and nodes that are in the
process of execution from the original DAG. Then based on
the reduced DAG and newly grouped cores, we update the
Gantt chart and ref ect the schedule into the desired partition,
by the application of the list scheduling algorithm introduced
before.
We provide an example as shown in Fig. 4. Here, 4 f ows are

assigned to a 4×4 tile-based multi-core network. All the cores
in the network was labeled with respective workload numbers.
Each line segment in the time axis represents the starting time,
ending time and duration time for respective f ow, as shown
in Fig. 4(a). We chose four important time points to explain
the proposed workload balancing policy. At time point t1,

1 2 3 4

(a) Four active f ows in the system

TP#1

TP#2

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

1

(b) 2 tile partitions at t1

TP#1 TP#2

TP#3

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

2

(c) 3 tile partitions at t1

TP#1 TP#2

TP#3 TP#4

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

3

(d) 4 tile partitions at t1

TP#1 TP#2

TP#3

0.5 0.5 0.5 0.8

0.3

0.5

0

0

0.8

0.5 0.5

0.3 0.6

1.0 0.5

4

(e) 3 tile partitions at t1

Fig. 4. Workload Balancing on a 4 × 4 tile-based multi-core network.

the system detects that two f ows #1 and #2 become active
and the required number of partitions is initialized as two.
The DTP algorithm is performed to organize the cores in the
network into two partitions for processing, which is illustrated
in Figure 4(b). By the application of list task scheduling within
each partition, the tasks of f ow #1 and f ow #2 are assigned
to the cores coming form tile partition (TP) #1 and VC #2
respectively. At time point t2, the newly detected f ow #2
increases the required partition number to three. The DTP
algorithm is therefore performed again. The 4 × 4 network
is re-organized into three tile partitions accordingly. Task
scheduling on the cores is also updated to substitute the
previous scheduling results. When performing re-scheduling
for each partition, we leave the cores in execution of tasks to
f rst f nish the assigned tasks without disturbing them. They
will be re-arranged for processing tasks as long as they become
available. In the similar way at time point t3, f ow #4 becomes
active. The required partition number is updated to four. The
network switches to a 4-partitions grouping and all the cores
are re-scheduled for task assignments. Notice that at time point
t4, the last task of f ow #1 has been f nished. This situation
changes the partition number back to three. All the cores
within the partition desired to process tasks of f ow #1 are
relaxed. By updating the core grouping these cores are re-
arranged to join other cores to share the networking workload.

IV. EXPERIMENTAL RESULTS

We use 64 cores as a multi-core system example. Table
1 records the result from DTP algorithm considering NBTI
aware workload at 90 second after simulation starts. It includes
partition number, core index, each core’s workload number and
its utilization. Only the stressed cores are listed in both tables.

TABLE I
THE WORKLOAD NUMBER AND CORE UTILIZATION FOR THE STRESSED

CORES

Stressed
Core Index

Partition
Grouped in

Workload
Number

Core
Utilization

9 1 0.7 0.6313
12 1 0.5 0.4624
28 3 0.5 0.4044
33 3 0.4 0.3679
37 6 0.4 0.3208
39 6 0.5 0.4374
50 7 0.8 0.6722
57 7 0.9 0.8276

To compare system performance, we choose 8/64 nodes to
be stressed (12.5%). First, we run simulations at normal load
up to 5000 cycles (about 10 second), then reduce the load
by 50% every 5000 cycles i.e. at 5000 cycles, the load is
now 0.5 of the offered load and at 10000 cycles it will be
25% of the offered load. We terminate at 15000 cycles. ”Non-
stressed” represents simulation without considering the stress
cores and ”Stressed” is the opposite one. Fig. 5 shows that the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
c
c
e
p

te
d

 L
o

a
d

(a

s
 a

 f
ra

c
ti

o
n

 o
f

n
e
tw

o
rk

 c
a
p

a
c
it

y
)

Offered Load (as a fraction of network capacity)

Non-Stressed

Stressed

Fig. 5. Comparison of Throughput Result with Non-Stressed and Stressed
Cases

throughput almost identical before considering NBTI and after
considering NBTI. Here, while stressed load on 8/64 nodes is
reduced, other nodes are at full rate. Here an insignif cant 6%
drop in throughput is observed.
Similar observation can be made with latency in Fig. 6.

When workload increases beyond 0.3, very minor differences
can be observed between the ideal ”Non-stressed” and the
”Stressed” cases. As the workload increases, we see that this
difference satuarates. This is mainly due to the fact that most
packets that could be injected are injected early in the network
simulation. Therefore, these packets form the bulk of the
traff c.

0

1000

2000

3000

4000

5000

6000

7000

8000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
im

u
la

ti
o

n
 C

y
c
le

s

Offered Load (as a fraction of network capacity)

Non-Stressed

Stressed

Fig. 6. Latency Comparison with Non-Stressed and Stressed Cases

Fig. 7 displays core failure percentage with regard to time.
The x-axis represents the time in terms of year and y-axis
represents the percentage of core failure. The red solid line
represents our new approach (”New”) while the blue dash
line represents the one without our strategy (”Old”). The
difference in terms of yield becomes obvious after 2 years and
starts to become diverse. We used Monte-Carlo simulation in

5

1 2 3 4 5 6 Year

New
Old

%

10

15

20

25

Fig. 7. Core Failure Percentage Comparison Between New strategy and
without New Strategy

HSPICE to monitor the critical path delay and total leakage
power for each core, and predicted the changes in MTTF. The
MTTF computation models come from [16] which includes
a series of variety of MTTF estimation approaches with
regard to the core activity in term of workload. Fig. 8 shows
the MTTF comparison between multi-core system without
the proposed methodology (”Old”) and with the proposed
methology (”New”). The x-axis presents the time in terms of
years of operation. The y-axis is the MTTF result that shows
the average MTTF of a 8/64 multi-core system. Though after
about 3 years both cases observe decreases in MTTF. The
”New” one shows about 30% less changes.

V. CONCLUSION

This paper presents a new design framework for multi-
core system to include device wear-out impact. The new
approach started from device fractional NBTI model, provides
a new NBTI aware system workload model, and a new DTP
algorithm to balance workload and traff c load among active
cores while relaxing stressed ones.

Old

1 2 3 4 5 6 Year

Month

10

8

6

4

2

New

Fig. 8. MTTF Comparison Between New strategy and without New Strategy

REFERENCES

[1] K. Constantinides, S. Plaza, J. Blome, V. Bertacco, S. Mahlke, T. Austin,
B. Zhang, and M. Orshansky, “Architecting a Reliable CMP Switch
Architecture”, ACM Trans. on Architecture and Code Optimization, Vol.
4, no. 1, March 2007.

[2] W. Wang, S. Yang, S. Bhardwaj, R. Wattikonda, S. Vrudhula, F. Liu, Y.
Cao, “The Impact of NBTI on the Performance of Combinational and
Sequential Circuits”, in Proc. DAC, 2007, pp. 364-369.

[3] S. Bhardwaj, W. Wang, R. Vttikonda, Y. Cao, S. Vrudhula, “Predictive
Modeling of the NBTI Effect for Reliable Design”, in Proc. CICC, 2006,
pp. 189-192.

[4] M. Mani, A. Devgan, and M. Orshansky, “An Eff cient Algorithm for
Statistical Minimization of Total Power under Timing Yield Constraints”,
in Proc. DAC, 2005, pp. 309-314.

[5] E. Karl, P. Singh, D. Blaauw, D. Sylvester, ”Compact in situ Sensors
for Monitoring NBTI and Oxide Degradation”, IEEE International Solid-
State Circuits Conference (ISSCC), February 2008

[6] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal”, in Proc. ICCAD,
2007, pp. 621-625.

[7] H. Jiang and C. Dovrolis, “Source-level IP packet bursts: causes and
effects”, in Proc. IMC, 2003, pp. 301-306.

[8] W. Shi, H. Macgregor and P. Gburzynski, “A scalable load balancer for
forwarding internet traff c: exploiting f ow-level business”, in Proc. ANCS,
2005, pp. 145-152.

[9] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks, Morgan Kaufmann, 2003.

[10] B. Parhami, Introduction to Parallel Processing Algorithms and Archi-
tectures. Kluwer Academic, 2002.

[11] K. Hwang and F. A. Briggs, Computer Architecture and Parallel
Processing. McGraw-Hill Education, 1986.

[12] T. C. Hu, “Parallel sequencing and assembly line problems”, Operations
Research, vol. 9, no. 6, pp. 841-848, Nov.-Dec., 1961.

[13] H. El-Rewini and M. Abd-El-Barr, Advanced Computer Architecture and
Parallel Processing. John Wiley & Sons, Inc., 2005.

[14] R. R. Muntz, and E. G. Coffman Jr., IEEE Trans. on Computers, Vol.
C-18, no. 11, November 1969.

[15] T. Schonwald, J. Zimmermann, O. Bringmann and W. Rosenstiel,
“Fully Adaptive Fault-Tolerant Routing Algorithm for Network-on-Chip
Architectures”, in 10th Euromicro Conference on Digital Systgem Design
Architectures, Methods and Tools, 2007, pp. 527-534.

[16] Y.Liu, W. Tang, and R. Zhang, ”Reliability and Mean Time to Failure
of Unrepairable Systems With Fuzzy Random Lifetimes”, IEEE Trans.on
Fuzzy Systems, Vol. 15, No. 5, Oct. 2007.

