
QORE: A Fault Tolerant Network-on-Chip
Architecture with Power-Efficient Quad-Function

Channel (QFC) Buffers

Dominic DiTomaso†, Avinash Kodi†, and Ahmed Louri‡,

†Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701
‡Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721

dd292006@ohio.edu, kodi@ohio.edu, louri@email.arizona.edu

Abstract—Network-on-Chips (NoCs) are quickly becoming the
standard communication paradigm for the growing number of
cores on the chip. While NoCs can deliver sufficient bandwidth
and enhance scalability, NoCs suffer from high power consump-
tion due to the router microarchitecture and communication
channels that facilitate inter-core communication. As technology
keeps scaling down in the nanometer regime, unpredictable
device behavior due to aging, infant mortality, design defects,
soft errors, aggressive design, and process-voltage-temperature
variations, will increase and will result in a significant increase in
faults (both permanent and transient) and hardware failures. In
this paper, we propose QORE - a fault tolerant NoC architecture
with Quad-Function Channel (QFC) buffers. The use of QFC
buffers and their associated control (link and fault controllers)
enhance fault-tolerance by allowing the NoC to dynamically
adapt to faults at the link level and reverse propagation direction
to avoid faulty links. Additionally, QFC buffers reduce router
power and improve performance by eliminating in-router buffer-
ing. Our simulation results using real benchmarks and synthetic
traffic mixes show that QORE improves speedup by 1.3× and
throughput by 2.3× when compared to state-of-the art fault
tolerant NoCs designs such as Ariadne and Vicis. Moreover, using
Synopsys Design Compiler, we also show that network power in
QORE is reduced by 21% with minimal control overhead.

I. INTRODUCTION

The shrinking of transistor sizes has enabled the remarkable

growth in the number of cores that can be integrated within

a single chip (called Chip Multiprocessors (CMPs)). As the

number of cores continue to scale and conventional on-chip

bus-based communications approach their limits, architects

were urged to consider other scalable communication strate-

gies. Network-on-Chips (NoCs) have emerged as the de facto

communication paradigm by offering scalability through a

modular design [1], [2]. In NoCs, segments of links are

connected via routers in order to overcome global wire delays

and scalability requirements. However, the combination of

links and routers incur a power and area expense which

adversely affects NoC performance. Extensive power opti-

mization techniques have been used to mitigate the NoC power

consumption. The NoC of Intel’s 80-core TeraFlops chip [3]

consumes 28% of the total tile power using simple cores,

whereas the NoC in the more recent Intel 48-core SCC [4]

consumes 10% of the tile power using regular cores. Power

optimizations of the NoC fabric is a critical piece of the

puzzle to sustain and continue the drastic growth in CMP

performance.

A typical NoC hardware consists of routers and communica-

tion channels connecting the routers. The router is comprised

of input/output ports, buffers, routing logic, and a crossbar

connecting input ports to output ports for packet routing.

Research has shown that router buffers are responsible for

46% of router power [5] and 30% of router area [6]. This

has motivated architects to implement buffer optimization

techniques such as elastic buffering [7], [8], [9] and bufferless

routing [10], [11]. By completely eliminating buffers and

implementing bufferless routing, recent work has reduced the

average network energy by 40% [10]. Buffers have been

moved from the router to the channels by replacing repeaters

on the channel with either flip-flops called elastic buffers

[8] or tri-state repeaters called channel buffers [9]. These

channel buffers can store packets when the register buffers are

congested or propagate data forward when necessary, thereby

mitigating power and area penalties associated with router

buffers.

Since the buffers have been moved to the channels, hard

errors in the channel buffers can cause complete failure,

impeding communication between routers. Researchers have

been tackling channel failure in NoCs [12], [13], [14], [15],

[16], [17], [18], [19]. Recently, the fault tolerant Ariadne

network [12] overcame channel faults by reconfiguring packet

routing to move around failures. Using up*/down* routing

and a series of flag broadcasts, the two unidirectional links

between routers were dynamically assigned as up or down to

create a tree network that avoid faulty channels. Another fault

tolerant NoC called Vicis [13] routed around faults and placed

turn restrictions at routers to avoid deadlocks. The BulletProof

architecture [20] concentrates on the router (not the channels)

and provides efficient fault tolerance schemes for routers to

overcome transient and permanent faults.

With the increasing number of cores, NoCs must manage the

communication demands, especially when faults are present.

Since NoCs are designed to handle peak traffic loads, many

communication channels can go under-utilized when network

978-1-4799-3097-5/14/$31.00 ©2014 IEEE978-1-4799-3097-5/14/$31.00 ©2014 IEEE

load is high or the workload is unbalanced. Recent research

on NoC performance has tackled above mentioned problems

using techniques such as reversibility or coding schemes [21],

[22], [23], [24], [25], [26]. Hesse et al. propose a bandwidth-

adaptive router (BAR) that aims to take advantage of these

under-utilized links with bidirectional, adaptive channels [22].

These bidirectional channels adapt channel bandwidth at a

fine-granularity according to network traffic demands. Re-

search has shown that channel reversibility can achieve higher

throughput and lower average packet latency in NoCs.

In this paper, we propose QORE - a fault toler-

ant network-on-chip architecture with power-efficient Quad-

Function Channel (QFC) buffers. We use forward and back-

ward propagation in channel buffers to simultaneously target

both power reduction as well as fault tolerance. Utilizing

these QFC buffers, we differ from previous work in that we

create reversible channel buffers with multiple functionalities:

on-demand data storage, on-demand forward data propaga-

tion, and backward data propagation. On-demand data stor-

age enables communication channels to act as buffers and

store data when the network load is low and function as

repeaters when the network load is high. QFC buffers simplify

buffering because packets can be routed straight from the

router input channel to the crossbar without being buffered

in the router as conventionally done in baseline NoC routers.

Often, the traffic patterns of real applications leave some

channels under-utilized which can waste bandwidth. We use

QFCs to improve performance by adapting them to traffic

demands, thereby, efficiently utilizing network resources. In

addition to improved performance, QORE uses these QFCs to

also increase NoC fault tolerance. QORE avoids non-minimal

paths around faults by reversing non-faulty channels to allow

back and forth communication between routers. We design

controllers to reverse links on a router by router basis to

improve performance and propose a backup ring network to

further enhance reliability in the presence of faults. While

prior research has analyzed channel buffers for reducing power

in routers with marginal performance penalty and channel

reversibility primarily for improving performance, to be best of

our knowledge no prior work has examined the use of channel

buffers and channel reversibility to simultaneously tackle the

challenging issues of power, performance and fault-tolerance.

The proposed QORE architecture attempts to address three

issues of power, performance and fault-tolerance in a cohesive

manner. The major contributions of this work include:

• Quad-Function Channel (QFC) Buffers: We design

channel buffers that can dynamically function as (1)

forward repeaters, (2) backward repeaters, (3) forward

buffers, and (4) backward buffers. This enables significant

power reduction with no router buffers while enabling

circuits to both improve performance and reliability.

• Improved Performance: We use our QFC concept to

enhance network performance by dynamically monitoring

channel utilization and adapting to network traffic. QORE

is able to maintain similar throughput and latency to the

high performance BAR network [22].

• Fault Tolerance: Using the proposed QFC buffers and a

backup ring network, we design a fault tolerant network

that can adapt to faults with minimum control overhead.

Our QORE network is able to handle faults better than the

Ariadne and Vicis networks while improving throughput

by 2.3×, reducing network power by 21%, and improving

speedup by approximately 1.3× on average when running

real applications (PARSEC [27], SPEC CPU2006 [28],

and SPLASH-2 [29] benchmarks).

II. MOTIVATION

In this paper, we focus on two important concerns in NoCs

while also maintaining network performance: high power

dissipation and declining reliability. As previously mentioned,

buffers consume a major portion of the router power. This

has been the key concern that has motivated researchers to

develop novel ideas such as bufferless networks [10], [11],

dynamic VC allocation [30], and elastic or channel buffers

[8], [9]. Buffers consume significant dynamic power when

traffic load is high as well as static power due to leakage.

Figure 1(a-b) shows the total power breakdown (in mW) for a

5x5 router from Synopsys Design Compiler using the TSMC-

LPBWP 40 nm technology library with a nominal supply

voltage of 1.0 V and an operating frequency of 2 GHz.

The dynamic power breakdown in Figure 1(a) shows that

buffers consume 33% of router power (buffers+crossbar). With

the same amount of buffer space, channel buffers can lower

dynamic power by 90%. Figure 1(b) shows the leakage power

breakdown of the router components in μW . As shown, the

leakage power of the buffers consume 68% of the total router

leakage power (buffers+crossbar). Channel buffers dissipate

more leakage power than the register buffers; however, this

increase is compensated by the very low dynamic power.

Clearly, high buffer power is a problem in NoCs that needs to

be addressed.

The next major concern in NoCs is reliability. The extreme

shrinking of transistor feature sizes has made NoCs vulnerable

to failures and data corruption. To examine the number of

link faults in an NoC, a fault model was used which was

similar to the model used in [12] in which a router design

consists of 20,413 gates. Faults were injected randomly and

weighted by the size of the gates. Therefore, gates with a larger

number of transistors have a higher probability of failing.

Figure 1(c) shows the number of faulty links caused by gate

failures for reversible channel buffers (explained in Section

III), non-reversible channel buffers, and conventional links

without channel buffers. Non-reversible channel buffers are

less reliable than conventional links due to the extra two

transistors added to each link. Reversible channel buffers are

even less reliable because of the eight additional transistors

as explained in Section IV-A. Therefore, robust fault tolerant

techniques are even more critical when using channel buffers.

In addition to power and fault tolerance, high network

performance is another concern in NoCs. Looking at a NoC

router, the amount of traffic entering and leaving the router

0
20
40
60
80

100
120
140

Crossbar Buffer Channel
Buffer

Po
w

er
 (m

W
)

(a) Dynamic Power (b) Leakage Power

0

5

10

15

20

Crossbar Buffer Channel
Buffer

Po
w

er
 (µ

W
)

0
10
20
30
40
50

0 50 100

Li
nk

 F
au

lts

Gate Failures

Rev. Channel Buf.
Channel Buf.
Conv. Links

(c) Link Failures

0
1
2
3
4
5
6

in ou
t in ou
t in ou
t in ou
t in ou
t in ou
t in ou
t in ou
t

+x -x +y -y +x -x +y -y

C
ha

nn
el

 U
til

iz
at

io
n

(%
)

(d) Channel Utilization
FMM blackscholes

Fig. 1: (a-b) Dynamic and Leakage power of buffers, (c)

link failures with and without channel buffers, and (d) link

utilization of a router.

will be similar when averaged across the whole application.

However, due to dynamic traffic patterns in NoC applications,

there will be period of time where the majority of traffic

will be either entering or leaving the router. This unbalanced

traffic can cause certain links to become under-utilized during

certain epochs. Figure 1(d) shows the link utilization of a

router in a 64 core network for two real applications. Each

side of the router (+x, -x, +y, and -y) has a link going

in and out. For the applications FMM and blackscholes

[27], [29], many links are under-utilized, thereby, wasting

bandwidth. For example, on the +x side of the router, the

”in” channel utilization is approximately double the ”out”

channel utilization. On other links, the ”in” utilization is much

lower than the ”out” utilization. Using reversibility, links can

change direction providing bandwidth where needed. Channel

buffers can reduce dynamic power while marginally increasing

leakage power; and reversible channel buffers could maximize

resource utilization and improve execution time, but would

need fault tolerant techniques to overcome the higher fault

rates observed in channel buffers.

III. QUAD-FUNCTION CHANNEL BUFFERS

In this section, we will explain the circuit and implemen-

tation details of our proposed QFC buffers. Channel buffers

have been shown to eliminate router buffer power by moving

storage to the channels with the side benefit of reducing the

area overhead with marginal performance penalty [9], [8].

In this work, we uniquely modify the previously proposed

channel buffers to function as bidirectional channel buffers

with similar advantages of reduced power while providing on-

demand storage. Figure 2(a) shows two physical channels with

four channel buffer stages per channel. The inset shows a

conventional channel buffer which uses four transistors and

a release (rel) control line to store or propagate packets in

one direction. The working of channel buffers to either store

or propagate packets based on router congestion and receive

signals via a control block has been discussed previously

[9]. The proposed reversible channel buffer circuit is shown

in Figure 2(b). By adding eight transistors to act as four

transmission gates, the channel buffers can propagate packets

in both directions in addition to storage. The four transmission

gates are controlled by the reverse signal (rev) sent from the

router. A table showing all possible functions of the reversible

channel buffer based on the inputs rel and rev are also shown

in Figure 2(b). Figure 2(c) shows various combinations of

reversible channel buffer functionalities; either as on-demand

storage or repeater, and with data propagating either in forward

or backward directions.

• Forward Buffer: When rel=0 and rev=0 data can be

stored in the forward direction (left to right). The data is

cut off from Vdd and GND and the data is stored on the

capacitance of the transistors.

• Backward Buffer: When rel=0 and rev=1 data can be

stored in the backward direction (right to left). Again, the

data is cut off from Vdd and GND and the data is stored

on the capacitance of the transistors.

• Forward Propagation: When rel=1 and rev=0 data can

propagate forward. The transistors connected to Vdd and

GND are enabled to allow propagation and the forward

propagation transmission gates are also enabled.

• Backward Propagation: When rel=1 and rev=1 data

can propagate backward. Again, the transistors connected

to Vdd and GND are enabled to allow propagation and

now the backward propagation transmission gates are

enabled.

We show four functions of our QFC for high network loads

(forward and backward buffers) and for low network loads

(forward and backward propagation). When our QFCs act

as buffers, the capacitance of the transistors must be large

enough to store the data for many cycles. Figure 3 shows

the discharge time of a channel buffer implemented with 130

nm transistors using the Virtuoso Analog Design Environment

from the Cadence tools. As shown, the discharge time of the

channel buffers is in the magnitude of milliseconds which

corresponds to millions of clock cycles with a 1 GHz clock.

IV. QORE ARCHITECTURE

In this section, we will describe the QORE architecture

including reversibility, the design and operation of the fault

tolerant network, the details of the fault and link controllers,

the router microarchitecture, and proof of deadlock-freedom.

A. QFC without Faults

Conventional routers, that use virtual channels (VCs) and

fixed connections between routers, can become a bottleneck if

there is high traffic in any direction. To reduce the buffering

bottleneck, QORE uses our reversible channel buffers to

dynamically allocate buffers to adapt to traffic patterns. Figure

4(b) shows the links between routers in QORE. In order

to have the same amount of buffering as a conventional 4

VC/input router, we place a set of N=4 links between routers

rel
rel

rev

rev rev

rev
rev’

rev’

rev’

rev’

Conventional
channel buffer

Reversible channel buffer
(a) (b)

rel rev Function
0 0 Store
0 1 Store
1 0 Forward
1 1 Backward

rel=1

rev=0

rev=0 rev=0

rev=0
rev’=1

rev’=1

rev’=1

rev’=1

Forward Propagation (rel=1, rev=0)

off

off

rev=1

rev=1 rev=1

rev=1
rev’=0

rev’=0

rev’=0

rev’=0

Backward Propagation (rel=1, rev=1)

off

off

(c)

rel=1

rel=0

rev=0

rev=0 rev=0

rev=0
rev’=1

rev’=1

rev’=1

rev’=1

Forward Buffer (rel=0, rev=0)

off

off

rev=1

rev=1 rev=1

rev=1
rev’=0

rev’=0

rev’=0

rev’=0

Backward Buffer (rel=0, rev=1)

off

off

rel=0

off

off

off

off

Fig. 2: (a) Conventional channel buffer, (b) our reversible

channel buffer, and (c) storage and propagation for both

forward and backward links.

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0.0 0.5 1.0 1.5 2.0

Vo
lta

ge
 (V

)

Time (ms)

ctrl
in
out

Fig. 3: Discharge time of channel buffer.

each consisting of two channel buffer lines. Each link consists

of two channel buffer lines to alleviate HoL blocking [7].

Additionally, since QORE has more links between routers than

the two links in conventional routers, we have reduced the

bandwidth of our links for a fair comparison, as explained

in the evaluation section. Therefore, the wire area overhead

of QORE is equal to the conventional baseline networks.

However, a designer can choose N to be a different number de-

Xbar

2 Channel Buffer
Lines each with
4 stages

-x
Xbar

N=4 Router
Links

East

West

Router 1 Router 2

a
b
c
d

Low Congestion More Buffers for East

Fig. 4: QORE’s four reversible router links each consisting of

two channel buffer lines.

pending on system requirements. Each router link is reversible,

allowing communication in both directions. However, the two

channel buffer lines in each link will always be directed the

same way. This will ensure that at any time, a packet will

have at least two VCs to choose from, which in turn will

alleviate HoL blocking. In QORE, when there is high traffic

in one direction, the links can change direction according to

the traffic load, thereby increasing buffer space. For example,

in Figure 4(b), when there is high eastbound traffic, three

links (a-c) can be allocated to the east direction while one

link (d) remains in the west direction. The three east links

can, therefore, use the under-utilized westbound buffers and

provide more buffering for eastbound traffic. This additional

buffering will relieve congestion at router 2 as well as router 1

and other upstream routers. Meanwhile, the one west link can

still provide buffering for westbound traffic. As a result, both

eastbound and westbound traffic can have ample buffering,

thereby, decreasing packet latency. Therefore, reversing router

links in QORE can reduce traffic bottlenecks caused by under-

utilized links and buffers.

Determining which direction to allocate links is critical in

QORE. Network traffic is measured using hardware counters

to store the number of link traversals in each direction. A

two-stage controller, which is detailed more in Section IV-C,

is used to allocate links to the appropriate direction based

on traffic demands. The first stage (link controller (LC)) of

the controller uses the counters to determine which direction

has the highest traffic called as the ”majority”. The second

stage (fault controller (FC)) will assign all but one link to the

majority direction or allocate equal links to both directions if

the link utilizations are similar. In the example in Figure 4(b),

each time a flit traverses links (a-d), both routers 1 and 2 will

increment their counters. Since there is high eastbound traffic

in this example, the link controllers will determine that the

majority of the traffic is moving from west to east. At this

point, the fault controllers in both router 1 and 2 will allocate

the first three links (a-c) to the east and allocate link (d) to

the west. If there are packets currently stored in the channel

buffers when the reversing occurs, then these packets will be

flushed out to escape VCs inside the downstream router.

12
FC

13
LC

FC
14

FC
15

LC

FC

8
FC

9
LC

FC
10

FC
11

LC

FC

4
FC

5
LC

FC
6

FC
7

LC

FC

0
FC

1
LC

FC
2

FC
3

LC

FC

LC

FC

Router

Link
Controller

Fault
Controller

Reversible
Link

 Backup
Ring

LC LC

LC LC

LC LC

LC LC a
+x

-x

+y

-y

b
c
d

Fig. 5: Layout of QORE showing links configured to an

arbitrary traffic pattern.

B. QFC with Faults

QORE uses QFC buffers to overcome hard faults in the

network. When a link in one direction is faulty, another link

can reverse its direction to overcome this fault. Figure 5

shows the overall layout of the QORE network for 16 routers

and can be easily scaled to large numbers. The routers are

connected to each other in a grid-like fashion similar to a

mesh network. However, instead of the two unidirectional

links between routers as in a mesh, QORE has four, narrower

reversible links between each router. Again, each reversible

link consists of two channel buffer lines. Also, the links are

narrower than the baseline links as explained in the Evaluation

section so there is no area overhead. The additional links create

redundant paths between routers to improve both performance

and reliability while avoiding HoL blocking. The link setup

shown in Figure 5 is arbitrary; each link can reverse in either

direction depending on traffic demands. QORE also has a

backup ring network which is used when there are a large

number of faults that potentially could isolate healthy routers.

Each router has a link controller (LC) and a fault controller

(FC) (Detailed in Section IV-C) that analyze link utilization

and determine which links to reverse.

Each set of four links can handle up to three faulty links

before using the backup ring. If a fault is detected in any of the

links of a set, then the remaining non-faulty links will point

in the directions specified by the LC and FC. For example,

suppose the four links on the +x side of router 0 are initially

setup as shown in Figure 5 with two links facing east (E)

and two links facing west (W). If faults are detected in both

links 0 and 1, then links 2 and 3 can overcome these faults by

changing their directions to E and W, respectively. This will

maintain connectivity between routers 0 and 1 so that packets

can still be transmitted to both sides. If three of the four links

fail then the fourth link can be used to communicate both ways

since it is reversible. However, if all four links between two

routers fail, then the backup ring network must be used. The

+x Link Status Table
Link Address

log2(n+x) bits
Direction

1 bit
Flit Count

log2(Rw) bits
Faulty

1 bit
Total Good

Links
log2(n+x)

+xLnk[0] In/Out Count Yes/No 0-n+x
+xLnk[1] In/Out Count Yes/No -
+xLnk[2] In/Out Count Yes/No -

+xLnk[n+x] In/Out Count Yes/No -

-y Link Status Table
-y Lnk[0] In/Out Count Yes/No 0-n-y
-y Lnk[1] In/Out Count Yes/No -
-y Lnk[2] In/Out Count Yes/No -
-y Lnk[n-y] In/Out Count Yes/No -

n+x entries

n-y entries

Router
+xLnk[n+x]
+xLnk[0]

-xLnk[n-x]
-xLnk[0]

+yLnk[n+y] +yLnk[0]

-yLnk[n-y] -yLnk[0]

Fig. 6: Link status tables.

backup ring network consists of two unidirectional rings, so

that packets can traverse the shortest path, either clockwise or

counterclockwise, to their destination. For example, if all four

+x links of router 0 fail and the destination is router 5 then

the packet will be routed on the ring network from router 0

to router 1, and so on up to router 5. Once a packet is on the

ring network, it must stay on the ring network until it reaches

its destination in order to avoid livelocks and deadlocks.

C. Link and Fault Controllers

In order to keep track of the status of each link, Link Status

Tables (LSTs) are implemented in hardware. There are four

LSTs per router in QORE; one for each set of links. The

naming convention is shown in the top portion of Figure 6.

The set of links on the right-side of the router are labelled as

the +x links, links on the left are labelled -x links, etc. Each

set of links has a LST containing information about the links.

Each table has as many entries as links in each direction. In

this paper, there are always 4 links in each direction. Hence,

n+x = n−x = n+y = n−y = 4 and each table has four

entries.

Each link in a specified direction has a unique identifier

stored in the Link Address field. Whether the link is facing

in towards the router or out away from the router is specified

in the Direction field. This field will be read by the routing

computation (RC) to determine valid routing paths and will

be set up by the algorithm in the FC. The Flit Count
data field stores the number of flit traversals on the link

within the reconfiguration window, Rw. These counters are

read by the LC to determine traffic demands. Each counter is

incremented every time its corresponding link receives a flit

and is decremented every time its corresponding link sends a

flit. The Faulty data field stores whether or not the link is

useable. This data field is read by the FC and RC. The field

is set when its corresponding link detects a fault. Detection

of faults can be done by implementing BIST (Built-In System

Test) [14], [31]; however, fault detection is beyond the scope

+x LC

count of link 0 +x Majority (E, W, or B)

+x FC

-y Majority (N, S, or B)

log2(n+x) Link
Address
Direction

-y LC -y FC
log2(n-y) Link

Address

+x

-y

Enable (end of Rw)

count of link 1

count of link 2
count of link 3

of good links

link 0 faulty?

Direction

No Faults

One Fault

Two Faults

Three Faults

(b)
Faulty Link

Good Link

(a)

link 1 faulty?
link 2 faulty?
link 3 faulty?

Fig. 7: (a) Block diagrams of link controller (LC) and fault

controller (FC) and (b) Example of fault adaptability.

of this work. Finally, each table stores the total number of

working links which is set each time a fault is detected.

The block diagrams for the LC and FC are shown in Figure

7(a). The LC and FC are split into 4 independent blocks

corresponding to each direction (+x, -x, etc.). The inputs of the

LCs are the direction fields for each of the 4 router links. The

output of the LCs indicates which direction (N=north, E=east,

S=south, W=west, or B=both) the majority of the flits were

traveling during the last Rw cycles. If the traffic was roughly

equal (within Δ where Δ=5% of total flit traversals in this

paper) then a B is output and an equal number of links will

face in each direction. The LC output gives a good measure

on the traffic demand so that link bandwidth can be properly

allocated. The simple algorithm to determine the majority of

the +x (px) links is shown in Algorithm 1. At the end of Rw,

the LCs total up the counts from their corresponding LSTs.

Since the counters are incremented when a flit is received

and decremented otherwise, a positive total would indicate the

majority of the traffic is moving ”West” for the set of +x links

and a negative total would indicate more ”East” Traffic. At

the end, the counts in the LSTs are cleared for next Rw. The

majority output is then fed to the FCs.

The inputs for the FC, shown in Figure 7(a), are the majority

signal, the total number of good links, and the fault status of

each link. The FC determines the new directions for each link

by outputting their link address and updating the direction

field in the LST. The algorithm to determine the directions

for the +x set of links is shown in Algorithm 1. If the LC

determines that the majority is W , then the FC will try to

assign a majority of the links to the W direction as shown

in Figure 7(b). The FC also tries to maintain connectivity by

assigning at least one link to the opposite direction of the

majority when possible. When there is only one non-faulty

link, then the FC must break connectivity and assign the link

to the majority direction. However, this will cause starvation

as packets cannot be sent in one direction. We resolve this by

allocating 60% of Rw to the majority direction and reserve

40% of Rw to the opposite direction. We chose 60% because

Algorithm 1 Link Controller and Fault Controller Pseudocode

for +x (px) Links

// Link Controller
if(Enable){

for(all links 0 to n+x − 1)
total count = total count + pxLnk[i].count;

if(total count � 0)
pxMajority = West;

else if(total count � 0)
pxMajority = East;

else
pxMajority = Both;

clear all counts();
}
// Fault Controller
if(Majority of traffic is West){

if(pxLnk.totalGood == 1)
assign one link(West);

else{
assign one link(East);
assign remaining links(West);

}
} else if(Majority of traffic is East){

// Same as above except interchange West and East
} else if(Traffic is similar in both directions){

assign half links(West);
assign half links(East);

}

our simulation results showed that this value gave the best

average performance over all the benchmarks.

D. Router Architecture

Figure 8 shows the router microarchitecture of QORE. The

four links to the left of the router can act as outputs or inputs.

When acting as an output, the data comes from the crossbar

and is demultiplexed onto the four channel buffers. As an

input, the data is multiplexed into the crossbar. After a signal

is multiplexed, it is normally sent straight to the crossbar.

However, it can be sent to an escape buffer. This escape buffer

is used to move packets from the channel buffers when the

links are reversed. They are also used to avoid deadlocking

[32] as explained in Section IV-E. When the escape buffers

are full the upstream router will receive a congestion signal

and will not send packets to the channel buffers; therefore,

guaranteeing that the escape buffers will have enough room

to flush out the channel buffers. Six buffers are used because

at most six channel buffer lines will face in one direction.

Therefore, the six escape buffers ensures that a packet will

have a buffer to go to when the links reverse. Each time a flit

traverses the links, the counters in the LSTs are incremented

or decremented based on the link direction. The inset in Figure

8 shows the counter for link 0. When a flit traverses a link,

it signals the counters and increments the flitcount in the

LST if the direction is in or decrements the flitcount if the

direction is out. The LC and FC blocks access information

from the LSTs as described in the previous section. The route

computation (RC) is modified to determine which link to send

data on in addition to which direction to send the packet. The

From Cores
To Cores

6 Esc.
Buffers

Ring

LC FC

RC SC

Counter
updates

Xbar

VCs

LSTs

Router

6 Esc.
Buffers

Ring

LC FC

RCSC

Counter
updates

Xbar

VCs

LSTs

flit
signal

Link 0
dir

+

1

1

link 0
count

-

Fig. 8: Router Microarchitecture showing inputs/outputs, LC,

FC, and RC.

link decision is based on which link has the lowest count in

the LST. Therefore, the traffic will be spread evenly among

the links. The switching control (SC) sends the release (rel)
and reverse (rev) signals to the channel buffers. When there

is contention at the crossbar or downstream router, the SC

notifies the channel buffers to store the data by setting the rel
signal to 0 as explained in Section III. The SC also reads the

LSTs to obtain the rev signal, notifying the channel buffers

of the correct direction.

E. Deadlock Avoidance and Reliability Concerns

In conventional NoCs, XY routing algorithm is used to

avoid deadlocks by avoiding turns (Y-to-X). However when

links reverse, if not handled properly, there is a potential for

deadlock as communication in one direction can be cut off

leading to starvation. In QORE, we avoid deadlocks by a)

maintaining connectivity, thereby, eliminating starvation, b)

using escape VCs to flush out channel buffers during reversing,

and c) keeping packets on the backup ring network until their

destination is reached. To prove that our network is deadlock-

free we examine the three possible states of the N links

between routers:

Case I: Zero to N-2 links are faulty. In order to pre-

vent deadlocks, connectivity must remain between routers.

FC algorithm 1 first assigns one link to the non-majority

direction then assigns the remaining links to the majority

direction. This ensures that there is always a connection in

both directions. Conventional deadlock-free algorithms such

as XY routing can, therefore, be applied and deadlocks are

completely avoided.

Case II: N-1 links are faulty. Again, in order to prevent

deadlocks, connectivity must remain between routers. How-

ever, in this case only one link is available. The algorithm of

the FC will assign this one link to the majority direction. Then

at 60% of Rw, FC will change the Direction field in the LST

to the opposite direction. This will cause the link to flush out

the data from the channel buffers to the escape VCs located at

the downstream router, thereby, allowing packets to be sent in

the opposite direction. Therefore, 60% of Rw will be allocated

to the majority direction and 40% of Rw will be allocated for

the opposite direction, providing full connectivity.

Case III: All N links are faulty. In this case, no channel

buffers are available and protocol states that packets must use

the backup ring network to proceed. To avoid deadlocks and

livelocks, packets must remain on the backup ring network

until their destination is reached. We ensure the packet stays

on the ring by adding a one bit ring field to the packet that

indicates to the RC whether or not the ring network should be

used. When the ring bit is ”1”, the RC will always send the

packet on the ring even if router links are available. If the ring

bit is ”0” then the router links must be used. To avoid circular

dependencies once on the bidirectional ring, a separate set of

VCs is allocated to each direction.

Protocol deadlocks can be avoided since each link has two

buffer lines. One buffer line can be assigned to requests while

the other is used for response traffic. Other than deadlocks

and livelocks, another concern may be the issue of the fault

tolerant components themselves failing such as the backup

ring network or the fault controllers. The backup ring network

adds redundancy to links between routers. Moreover, since this

backup ring network does not use reversible channel buffers, it

has 10 less transistors at every repeater creating a more robust

connection between routers. For the LC, FC, and LSTs, since

they have a very small overhead, as shown in Section V-A,

these components would be ideal for dual modular redundancy

(DMR) or triple modular redundancy (TMR).

V. EVALUATION

In this section, we first consider the overhead for our

reconfiguration controllers and reversible buffers. Next, we

evaluate the fault tolerant performance of QORE compared to

the Ariadne [12], Vicis [13] networks by evaluating throughput

and power on synthetic traffic as well as speedup on real

benchmarks. Lastly, we consider the effect of our reversibility

on the overall performance of QORE when no faults are

present by comparing to BAR [22] which is not a fault tolerant

network.

For open-loop measurement, we varied the network load

from 0.1-0.9 of the network capacity. The simulator was

warmed up under load without taking measurements until

steady state was reached. Then a sample of injected packets

were labeled during a measurement interval. The simulation

was allowed to run until all the labeled packets reached their

destinations. All designs were tested with different synthetic

traffic traces such as Uniform Random (UN), non-uniform

random (NUR), Bit-Reversal (BR), Butterfly (BFLY), Matrix

Transpose (MT), Complement (COMP) and Perfect Shuffle

(PS).

For closed-loop measurement, the full execution-driven

simulator SIMICS from Wind River [33] with the memory

package GEMS [34] was used to extract traffic traces from

real applications. The Splash-2, PARSEC, and SPEC CPU200

TABLE I: Cache and core parameters used for Splash-2,

PARSEC, and SPEC2006 application suite simulation.

Parameter Value
L1/L2 coherence MOESI

L2 cache size/assoc 4MB/16-way
L2 cache line size 64

L2 access latency (cycles) 4
L1 cache/assoc 64KB/4-way

L1 cache line size 64
L1 access latency (cycles) 2

Core Frequency (GHz) 5
Threads (core) 2

Issue policy In-order
Memory Size (GB) 4
Memory Controllers 16

Memory Latency (cycle) 160
Directory latency (cycle) 80

workloads were used to evaluate the performance of 64-core

networks. Table I shows the parameters for the cache and core

used for the Splash-2, PARSEC, and SPEC2006 benchmarks.

We assume a 2 cycle delay to access the L1 cache, a 4 cycle

delay for the L2 cache, and a 160 cycle delay to access main

memory. The power and area results were estimated using the

Synopsys Design Compiler with the 40 nm TSMC technology

library.

For fair comparison, every network had 4 VCs per input

and each network was assumed to have a concentration of four

cores to a single router as this has been shown to minimize

energy and latency while allowing a larger number of cores on

a chip [35]. Additionally, we maintained similar bi-sectional

bandwidths for each network. The conventional router design

(both Ariadne and Vicis) will have two links between each

router (one for each direction) and QORE has at most six

links between routers (four reversible links, two unidirectional

links for the ring) for a ratio of 1:3. However, the bandwidth

of each link in QORE is 32 bits/cycle so the total bandwidth

between routers will be 192 bits/cycle. Therefore, each link in

the conventional design will be 192/2=96 bits/cycle which is

3X the bandwidth of a QORE link. We have assumed that the

backup ring network is fault-free and the packet size is four

flits each 128 bits.

A. Power, Area, and Timing of Reversibility Overhead

Table II shows the power overhead for the network com-

ponents of one router estimated from the Synopsys Design

Compiler with a nominal supply voltage of 1.0 V and an

operating frequency of 2 GHz. A buffer for the baseline

design is a a four flit register buffer and a buffer for QORE

is a four stage reversible channel buffer. Each router, in either

design, contains 32 buffers (4 inputs × 8 buffers). The buffers

in QORE consume 19.8 mW of power; approximately 82.3%

less than the baseline register buffers. The amount of leakage

power for the reversible channel buffer was found to be 2.44

nW. The overhead of the LC and FC is approximately 96 nW

of power and a timing of 0.07 ns. The power is a minimal

fraction of the total router and the timing is within or clock

period. The link power for both baseline and QORE are equal

TABLE II: Power overhead for the components of one router.

Baseline QORE Percent Diff.
Storage 111.6 mW 19.8 mW -82.3%

LC 0 96.27 nW -
FC 0 96.64 nW -

Link (2×96 bits) (6×32 bits)
307.2 mW 307.2 mW 0%

Crossbar (8×8) (9×9)
67.4 mW 86.2 mW +27.9%

Total 486.2 mW 413.2 mW -15.0%

TABLE III: Area overhead for the components of one router.

Baseline QORE Percent Diff.
(μm2) (μm2)

Storage 43,712 147,392 +237.2%
LC 0 1.41 -
FC 0 1.42 -

Link (2×96 bits) (6×32 bits)
23,629 23,629 0%

Crossbar (8×8) (9×9)
580,007 622,418 +7.3%

Total 647,348 793,442 +22.6%

since the total link bandwidth is kept equal. An crossbar power

overhead of 27.9% is due to the backup ring network in QORE

leading to a slightly larger crossbar.

Table III shows the area overhead of each router component.

The buffers in QORE occupy 147,392 μm2 which is 3.4×
more area than the baseline register buffers. However, unlike

register buffers and conventional channel buffers, our channel

buffers serve three functions: storage, reversibility, and a link

repeater. The area overhead of the LC and FC components

are approximately 1.4 μm2 which is minimal compared to

the other router components. The timing for our reversible

channel buffers was estimated to be 0.39 ns which is within

our specified clock period of 0.50 ns. The critical path of the

four stage reversible channel buffers was composed of eight

pass gates (0.22 ns) and four non-reversible channel buffers

(0.17 ns). The timing of the critical path as well as estimate

of power and area accounted for all additional wiring required

between routers.

B. Speedup on Real Applications

The speedup of BAR (B), QORE (Q), Ariadne (A) relative

to Vicis (V) for different real applications is shown in Figure 9.

The networks were simulated on all applications; however, we

only have space to show four applications in the figure. QORE

reconfigures its links every Rw = 50 cycles. Different values

of Rw are evaluated in Section V-F. Before runtime, faults

were randomly inserted into a percentage of links ranging

from 0% to 50%. Since BAR is not a fault tolerant network,

it is only shown for 0% faults. At 0% faults, the performance

optimized BAR has the largest speedup for all applications

as expected. At low to medium faults (0-30%), QORE has

an average speedup of 1.68× across applications for all

benchmarks. At a high number of faults (40-50%), QORE has

a worse speedup of 0.51× on average. However, this can be

misleading because the high number of faults causes Ariadne

FFM FFT

0

0.5

1

1.5

2

2.5

3

3.5

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Sp
ee

du
p

* * * * * * * * * * * *

bzip freqmine

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

(a)

*High number
of subnetworks

* * * * * * * * * * * *

0

0.5

1

1.5

2

2.5

3

3.5

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Sp
ee

du
p

LU Ocean

* * * * * * * * * * * *

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
streamcluster swaptions (b)

*High number
of subnetworks

* * * * * * * * * * * *

Fig. 9: Speedup of relative to Vicis with varying number of faults where BAR (B), QORE (Q), Ariadne (A) relative to Vicis

(V) for 64 cores with SPLASH-2, PARSEC, and SPEC CPU2006 benchmarks.

0
2
4
6
8

10
12
14

10 15 20 25 30 35 40 45 50

N
um

be
r o

f S
ub

-
N

et
w

or
ks

Percent Faults (%)

Ariadne/Vicis

QORE

Fig. 10: Average number of subnetworks of QORE compared

to Ariadne and Vicis.

and Vicis to be split into small subnetworks. Subnetworks are

very undesirable because cores from one subnetwork will not

be able to communicate with cores from another subnetwork.

The average number of subnetworks for each network is shown

in Figure 10. QORE always maintains connectivity through the

backup ring network. The number of subnetworks in Ariadne

and Vicis increase with the number of faults. Subnetworks

partition the chip, blocking communication to many cores. The

subnetworks, therefore, lead to a false increase in speedup as

also observed in [12]. Whereas, the reversibility of links makes

QORE more resilient to communication blocking.

C. Network Throughput with Faults

The saturation throughput of the networks for different

synthetic traffic mixes is shown in Figure 11. Four different

types of traffic mixes we examine are shown in Table IV using

the abbreviations defined previously in Section V; However,

due to space constraints we only show two mixes. Each mix

randomly cycles through each pattern every TP=250 cycles.

QORE reconfigures its links every Rw = 50 cycles.

In Figure 11, QORE consistently has similar throughput to

BAR and a higher throughput than both Ariadne and Vicis.

Averaged over each traffic mix and fault percentage, QORE’s

saturation throughput is 2.3× and 2.9× higher than Ariadne

and Vicis, respectively. Similar to the speedup results, an

increase in throughput can be seen in all mixes when the fault

percentage changes from 20% to 30%. Again, this is due to

link faults causing the network to be partitioned into smaller

subnetworks. When the faults increase to a high percentage

(40-50%), few flits are sent on a network that has many cores,

so the throughput (flits/cycle/core) starts to decrease again.

From 0-20% faults, QORE only sees a drop in performance

of 3.5% averaged over all mixes compared to an approximately

70% drop for Ariadne and Vicis. QORE is able to sustain

performance due to the adaptability of its links. When a wire

between two routers is faulty in Ariadne or Vicis, then all

communication between those two routers is blocked even

if other wires are non-faulty. With many faults, this limits

the number of paths in the network. Therefore, many packets

are sharing the same paths which causes a drastic increase in

contention for links. QORE, on the other hand, can overcome

one or more faulty wires by reversing the available non-faulty

links. Reversibility preserves paths between routers which

relieves contention. Maintaining minimal contention for links

is a main factor for maintaining high throughput.

TABLE IV: Traffic Mixes

Mix Patterns
Mix 1 BR, BFLY, COMP
Mix 2 NUR, BR, PS
Mix 3 UN, BFLY, MT
Mix 4 UN, BR, COMP, PS

D. Packet Latency with Faults

Figure 12 shows multiple plots for the packet latency at

various fault percentages for traffic mix 1. Latency plots at

10%, 20%, 40%, and 50% faults were not shown due to space

constraints. At 0% faults, BAR saturates at the highest load

due to its adaptability, and fine-grained flit transmission. The

low load latency for both BAR at 0% faults and QORE for

all faults is higher than both Ariadne and Vicis. This is due to

the serialization delays combined with narrow links in BAR

and QORE. However, QORE saturates at a higher load for

most fault percentages. At 10%, 20%, and 30% faults, QORE

saturates at least 77%, 160%, and 150% higher than Ariadne

and Vicis. Faults in Ariadne and Vicis can easily shut down

communication between routers. The fault tolerant schemes

in these networks forces many packets to take additional hops

to reach their destinations because they must move around

routers. The increase in hop count greatly increases packet

latency for the Ariande and Vicis networks. QORE is able

to route more packets minimally to their destination to keep

latency low. At 50% faults, Ariadne and Vicis saturate 87.5%

higher than QORE. However, this is due to the many un-

reachable cores in Ariadne and Vicis which create very small

subnetworks resulting in packets with little to no contention.

E. Network Power

The total network power for the networks is shown in Figure

13 for different numbers of link faults and two mixes, although

we evaluated the network on all four mixes. Even though

reversible channel buffers have a smaller power than register

buffers, we have assumed that all the networks have the same

buffer power of 618.5 nW and area of 4,606 μm2 as shown in

Table I. This is done to ensure that the no network has an unfair

advantage due to a different buffer technology which trades off

Mix 1 Mix 2

0

0.05

0.1

0.15

0.2

0.25

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

(fl

its
/c

yc
le

/c
or

e)

Fig. 11: Saturation throughput for varying percentage of link

failures for different traffic mixes for BAR (B), QORE (Q),

Ariadne (A) and Vicis (V).

0
100
200
300
400
500
600
700

0.01 0.06 0.11 0.16 0.21

La
te

nc
y

(c
yc

le
s)

Offered Load

BAR
QORE
Ariadne
Vicis

(a) 0%

0
100
200
300
400
500
600
700

0.01 0.06 0.11 0.16

La
te

nc
y

(c
yc

le
s)

Offered Load

QORE
Ariadne
Vicis

(b) 30%

Fig. 12: Latency plots for traffic mix 1.

Mix 1 Mix 2

0

200

400

600

800

1000

1200

1400

BQAV QAV QAV QAV QAV QAV BQAV QAV QAV QAV QAV QAV

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Po
w

er
 p

er
 F

lit
 (m

W
)

Fig. 13: Network power for different traffic mixes for BAR

(B), QORE (Q), Ariadne (A) and Vicis (V).

area for power. For mix 1, QORE saves at least 15% power

over Ariadne and Vicis on average. Additionally, QORE saves

25%, 22%, and 23% on traffic mixes 2, 3, and 4. The main

contribution to the power savings is the link power. Ariadne

and Vicis route around faulty links which many times leads

to packets taking non-minimal paths to the destination. QORE

can avoid this as long as there is one working link between

routers. The only time QORE has the possibility to take a non-

minimal path is when the backup ring is used which, in this

simulation, only occurred when the fail percentage was 50%.

As seen in Figure 13 for 50% faults, the power of QORE is

higher than Ariadne because of the backup ring routes packets

on non-minimal paths for this particular traffic mix. BAR has a

power 9.5% less than QORE due to the backup ring in QORE

which increases the crossbar size by one. However, when the

number of faults increases, QORE cannot be compared to

BAR since BAR is not a fault tolerant network. Therefore,

QORE can save approximately 21% power on average while

providing better fault coverage with a speedup 1.3× higher

and improved throughput by 2.3×.

(a) TP=250 Rw=50

0

0.05

0.1

0.15

0.2

0.25

mix 1 mix 2 mix 3 mix 4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

(fl

its
/c

yc
le

/c
or

e)

BAR QORE Baseline

0

0.05

0.1

0.15

0.2

0.25

mix 1 mix 2 mix 3 mix 4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

(fl

its
/c

yc
le

/c
or

e)

BAR QORE Baseline

(b) TP=250 Rw=100

0

0.05

0.1

0.15

0.2

0.25

mix 1 mix 2 mix 3 mix 4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

(fl

its
/c

yc
le

/c
or

e)

BAR QORE Baseline

(c) TP=500 Rw=50

0

0.05

0.1

0.15

0.2

0.25

mix 1 mix 2 mix 3 mix 4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

(fl

its
/c

yc
le

/c
or

e)

BAR QORE Baseline

(d) TP=500 Rw=100

Fig. 14: Effect Rw on saturation throughput for varying traffic

mixes.

F. Network Performance of Reversibility

We have shown that QORE can handle errors very well us-

ing reversibility. In this section, we will show that QORE can

overcome faults while maintaining performance by comparing

QORE to the non-fault tolerant, high performance BAR. In

BAR, links are reconfigured every cycle (Rw = 1 cycle). In

this section, we evaluate the effect of a longer Rw on QORE

as well as the difference between the two networks. Figure 14

shows the saturation throughput of QORE compared to BAR

and a baseline network which is QORE without reversibility.

In the first two parts of Figure 14, TP=250 is the same and Rw

varies from 50 cycles in Figure 14(a) to 100 cycles in Figure

14(b). When Rw = 50 the saturation throughput of QORE is

2.5% less than BAR. When Rw increases to 100 cycles, QORE

has less opportunities to reconfigure and the performance drop

increases from 2.5% to 4.6%. In Figure 14(c) and 14(d) TP

increases to 500 cycles and Rw changes from 50 cycles to

100 cycles again. In this case, the performance drop changes

from 1.7% when Rw = 50 to 7.3% when Rw = 100. The

uniform nature of mixes 3 and 4 give BAR a slight advantage

over QORE since BAR reconfigures every cycle and at a finer

granularity. Compared to the baseline, QORE can improve

throughput by an average of 7.9% when Rw = 100 and the

improvement can increase to 12.2% when Rw is changed to

50 cycles. Overall, when Rw = 50 cycles QORE performance

is only 2.5-4.6% lower than BAR and 12.2% higher than the

baseline, but has the additional benefit of being able to handle

faults.

VI. RELATED WORK

With the increase of soft and hard errors in NoCs due to

decreasing technology sizes, much research has gone into the

detection and handling of errors. Built-In Self Tests (BISTs)

are commonly used to detect errors in systems. Recently,

NoCAlert [14] was proposed which detected faults in real-time

with 0% false negatives. Low overhead checkers were used to

detect faults without the need of periodic or triggered-based

testing.

As described in the introduction, the Ariadne [12] network

uses up*/down* routing to move around faults. Each time

a fault was detected, new routing paths were created by

transmitting a series of flag broadcasts to all routers. This

created a deadlock-free tree network for the irregular topology.

The Vicis [13] network also changes its routing algorithm

to move around faults when detected. To avoid deadlocks,

turn restrictions are placed at certain routers. The Immunet

[15] design avoids faults by adaptively routing packets while

using escape VCs to avoid deadlocks. Our design differs from

these previous works in that we try to avoid additional hops

when possible by using reversible links. The implementation

of reversibility eliminates the need for routing tables and

multiple flag broadcasts to reconfigure the network as seen

in Ariadne. Furthermore, in other networks, if one of the

two unidirectional links fails then neither link can be used

because this would create a one way path to a router. We

mitigate this problem by using reversible links as opposed to

unidirectional links. Therefore, as long is there is one good

link to a router, communication will not be halted. The work

in [36] uses bi-directionality in the two channels between

routers to provide fault-tolerance to the links. QORE differs

in that we move the buffers to the links and create reversible

channel buffers to lower power and provide fault coverage to

buffers. Additionally, we can provide higher fault coverage by

implementing more than two links between each router.

In [22], a bandwidth-adaptive router (BAR) was created

to increase channel utilization without affecting network la-

tency. BAR increased channel utilization by using narrower

channels while also improving performance through adaptive

bidirectional channels. Our work also differs from BAR in

that we reverse links as well as buffering by using reversible

channel buffers. The reversing of buffers as well as links

allows the downstream routers to store the increasing number

of packets. Additionally, we reverse links/buffers at a coarser

granularity to reduce serializer/deserializer overhead. Another

reconfigurable design was proposed in BiNoC [21]. BiNoC

dynamically reconfigured bidirectional channels to improve

performance. We differ from BiNoC in that we reverse buffer-

ing as well as links to provide fault tolerance.

VII. CONCLUSIONS

With the decreasing technology sizes and increasing number

of cores number integrated on a single chip, the design of

fault tolerant NoCs that do not degrade performance is critical.

In this paper, we propose QORE - a fault tolerant NoC

architecture using reversible channel buffers. We use QORE’s

reversibility for increased performance and to overcome faulty

links. Our results on real benchmarks (SPEC CPU2006, PAR-

SEC, and SPLASH-2) show an increase in speedup of 1.3×
and improved throughput by 2.3× on synthetic traffic com-

pared to related work. Using the Synopsys design compiler,

we show that QORE reduces network power by 21% while

requiring minimal control overhead.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers as well

as Prof. Savas Kaya for his feedback. This research was

supported by the Stocker Research Assistantship and NSF

awards ECCS-0725765, CCF-1054339 (CAREER), ECCS-

1129010, ECCS-1342657, ECCS-1342702, CNS-1342984,

CCF-0915537, and CNS-1318997.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: A new soc paradigm,”
IEEE Computer, vol. 35, pp. 70–78, 2002.

[2] W. J. Dally and B. Towles, “Route packets, not wires,” in Proceedings of
the Design Automation Conference (DAC), Las Vegas, NV, USA, June
18-22 2001.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-ghz
mesh interconnect for a teraflops processor,” IEEE Micro, pp. 51–61,
September/October 2007.

[4] J. Held, “Single-chip cloud computer: An experimental many-core
processor from intel labs.” Presented at Intel Labs Single-chip Cloud
Computer Symposium, Santa Clara, California, Feb. 12, 2010.

[5] P. Kundu, “On-die interconnects for next generation cmps,” in 2006
Workshop on On- and Off-Chip Interconnection Networks for Multicore
Systems, Stanford, CA, USA, December 6-7 2006.

[6] G. Michelogiannakis, D. Sanchez, W. Dally, and C. Kozyrakis, “Evaluat-
ing bufferless flow control for on-chip networks,” in Fourth ACM/IEEE
International Symposium on Networks-on-Chip (NOCS), May 2010, pp.
9–16.

[7] A. K. Kodi, R. Morris, D. DiTomaso, A. Sarathy, and A. Louri, “Co-
design of channel buffers and crossbar organizations in nocs archi-
tectures.” IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2011.

[8] G. Michelogiannakis, J. Balfour, and W. J. Dally, “Elastic-buffer flow
control for on-chip networks,” in Proceedings of the Fifteenth Interna-
tional Symposium on High-Performance Computer Architecture, 2009,
pp. 151–162.

[9] A. K. Kodi, A. Sarathy, and A. Louri, “ideal: Inter-router dual-function
energy- and area-efficient links for network-on-chip (noc),” in Proceed-
ings of the 35th International Symposium on Computer Architecture
(ISCA’08), Beijing, China, June 2008, pp. 241–250.

[10] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” in Proceedings of the 36th annual International Symposium
on Computer Architecture, June 2007.

[11] M. Hayenga, N. E. Jerger, and M. Lipasti, “Scarab: A single cycle adap-
tive routing and bufferless network,” in Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture, December
2009.

[12] A. DeOrio, L.-S. Peh, and V. Bertacco, “Ariadne: Agnostic reconfigu-
ration in a disconnected network environment,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2011, pp. 298–309.

[13] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A highly resilient routing algorithm for fault-tolerant nocs,” in Proceed-
ings of the Conference on Design, Automation and Test in Europe, 2009,
pp. 21–26.

[14] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides, “Nocalert:
An on-line and real-time fault detection mechanism for network-on-chip
architectures,” in to appear in The 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012.

[15] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: A cheap
and robust fault-tolerant packet routing mechanism,” SIGARCH Comput.
Archit. News, vol. 32, no. 2, 2004.

[16] J. Kim, C. Nicopoulos, D. Park, N. Vijaykrishnan, and C. R. Das, “A
gracefully degrading and energy-efficient modular router architecture
for on-chip networks,” in Proceedings of the 33rd annual international
symposium on Computer Architecture, 2006, pp. 4–15.

[17] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-noc: a
heterogeneous network-on-chip architecture for scalability and service
guarantees,” in Proceedings of the 38th annual international symposium
on Computer architecture, 2011, pp. 401–412.

[18] S. Lin, J. Shi, and H. Chen, “Designing cost-effective network-on-chip
by dual-channel access mechanism,” Journal of Systems Engineering
and Electronics, vol. 22, no. 4, pp. 557 –564, Aug. 2011.

[19] E. Carara, F. Moraes, and N. Calazans, “Router architecture for high-
performance nocs,” in Proceedings of the 20th annual conference on
Integrated circuits and systems design, 2007, pp. 111–116.

[20] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S. Mahlke,
T. Austin, and M. Orshansky, “Bulletproof: a defect-tolerant cmp
switch architecture,” in The Twelfth International Symposium on High-
Performance Computer Architecture, 2006, 2006, pp. 5–16.

[21] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu, and S.-J. Chen, “Binoc: A
bidirectional noc architecture with dynamic self-reconfigurable channel,”
in Proceedings of the 3rd ACM/IEEE International Symposium on
Networks-on-Chip, 2009, pp. 266–275.

[22] R. Hesse, J. Nicholls, and N. Jerger, “Fine-grained bandwidth adaptivity
in networks-on-chip using bidirectional channels,” in Sixth IEEE/ACM
International Symposium on Networks on Chip (NoCS), May 2012, pp.
132–141.

[23] M. Hayenga and M. Lipasti, “The nox router,” in Proceedings of the
44th Annual IEEE/ACM International Symposium on Microarchitecture,
2011, pp. 36–46.

[24] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, T. Wen, and S. De-
vadas, “Oblivious routing in on-chip bandwidth-adaptive networks,” in
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques, 2009, pp. 181–190.

[25] P. Kumar, Y. Pan, J. Kim, G. Memik, and A. Choudhary, “Exploring con-
centration and channel slicing in on-chip network router,” in Proceedings
of the 2009 3rd ACM/IEEE International Symposium on Networks-on-
Chip, pp. 276–285.

[26] S.-J. Chen, Y.-C. Lan, W.-C. Tsai, and Y.-H. Hu, Reconfigurable
Networks-on-Chip. Springer, 2012.

[27] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[28] J. L. Henning, “Spec cpu suite growth: an historical perspective,”
SIGARCH Comput. Archit. News, vol. 35, pp. 65–68, March 2007.

[29] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The splash-
2 program: Characterization and methodological considerations,” 1995,
pp. 24–36.

[30] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and
C. R. Das, “Vichar: A dynamic virtual channel regulator for network-
on-chip routers,” in Proceedings of the 39th Annual International
Symposium on Microarchitecture (MICRO), December 9-13 2006, pp.
333–344.

[31] J. H. Collet, A. Louri, V. T. Bhat, and P. Poluri, “Robust: a new self-
healing fault-tolerant noc router,” in Proceedings of the 4th International
Workshop on Network on Chip Architectures, 2011, pp. 11–16.

[32] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 14, no. 3, pp. 259–275, Mar 2003.

[33] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hllberg,
J. Hgberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” Computer, vol. 35, pp. 50–58, 2002.

[34] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen,
K. Moore, M. Hill, and D. Wood, “Multifacet’s genreal execution-driven
multiprocessor simulator (gems) toolset,” ACM SIGARCH Computer
Architecture News, no. 4, pp. 92–99, November 2005.

[35] J. Balfour and W. J. Dally, “Design tradeoffs for tiled cmp on-chip
networks,” in Proceedings of the 20th ACM International Conference
on Supercomputing (ICS), Cairns, Australia, June 28-30 2006, pp. 187–
198.

[36] W.-C. Tsai, D.-Y. Zheng, S.-J. Chen, and Y.-H. Hu, “A fault-tolerant noc
scheme using bidirectional channel,” in 48th ACM/EDAC/IEEE Design
Automation Conference (DAC), 2011.

