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Abstract—In Symmetric Multiprocessors (SMPs), the cache coherence overhead and the speed of the shared buses limit the address/
snoop bandwidth needed to broadcast transactions to all processors. As a solution, a scalable address subnetwork called Symmetric
Multiprocessor Network (SYMNET) is proposed in which address requests and snoop responses of SMPs are implemented optically.
SYMNET not only uses passive optical interconnects that increases the speed of the proposed network, but also pipelines address
requests at a much faster rate than electronics. This increases the address bandwidth for snooping, but the preservation of cache

coherence can no longer be maintained with the usual snooping protocols. A modified coherence protocol, Coherence in SYMNET
(COSYM), is introduced to solve the coherence problem. COSYM was evaluated with a subset of Splash-2 benchmarks and compared
with the electrical bus-based MOESI protocol. The simulation studies have shown a 5-66 percent improvement in execution time for
COSYM as compared to MOESI for various applications. Simulations have also shown that the average latency for a transaction to
complete using COSYM protocol was 5-78 percent better than the MOESI protocol. It is also seen that SYMNET can scale up to

hundreds of processors while still using fast snooping-based cache coherence protocols, and additional performance gains may be

attained with further improvement in optical device technology.

Index Terms—SMPs, parallel optical interconnects, cache coherence, scalable optical networks.

1 INTRODUCTION

SYMMETRIC multiprocessors (SMPs) are attractive parallel
computers widely used, since they provide a global
physical address space and a symmetric access to the entire
memory with increased flexibility and programmability [1],
[2], [3]. SMPs use fast snooping protocols to maintain cache
coherence by broadcasting every request on the shared bus
connecting all modules. Contention to acquire the bus in
addition to faster processing capabilities of current proces-
sors degrades the performance of the shared-bus. As the
bus speed increases, the processor boards connected to the
bus behave as stubs resulting in reflections of bus signals
[3]. Other fundamental problems such as impedance
mismatch, stray capacitance, Al noise, and crosstalk [3],
[4] significantly affect the speed improvements of the
shared bus. Therefore, the bus speed and the coherence
overhead limit the rate at which address requests can be
broadcast to all the processors/memory modules [5], [6].
This address rate/bandwidth is the main scaling limit,
which cannot follow the increasing demands of faster and
large number of processors, limiting the scalability of
shared-bus-based SMPs.

1.1 Electrical Solutions for the Address Bandwidth
Problem

Several techniques have been used to increase the address
bandwidth in SMPs that include split transaction buses [7],

multiple address buses [6], and physically separate address

o The authors are with the Department of Electrical and Computer
Engineering, University of Arizona, 1230 E. Speedway Blvd., Tucson,
AZ 85721. E-mail: {louri, avinashk}@ece.arizona.edu.

Manuscript received 26 Nov. 2002; revised 16 Mar. 2004; accepted 21 May
2004.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 117845.

1045-9219/04/$20.00 © 2004 IEEE

and data subnetworks [6]. Current commercial implementa-
tions have replaced the shared-bus topology by implement-
ing each bus with a pipelined broadcast tree constructed from
point-to-point links [6]. More aggressive solutions using
multiple crossbars have been adopted to increase the address
bandwidth by using a combination of snooping and directory
cache coherence protocols in the FirePlane [2] design from Sun
MicroSystems. Asynchronous caches [3] are implemented by
using a deeply pipelined memory system with parallel-link
interconnection and queues through which the memory and
the processors communicate. Timestamp snooping protocol
[8] reduces the execution time by broadcasting requests over
an indirect interconnection network. As seen above, shared-
bus topology is currently being replaced by scalable inter-
connection networks so that when the system is scaled,
additional processors are incorporated into the network by
simply using more commodity switching chips. Unfortu-
nately, there are a limited number of data ports available per
switching chip, and more switching chips are usually added
to accommodate for the additional point-to-point connec-
tions. As a consequence, a significant delay occurs in the
additional switching stages, which in turn dramatically
increases the latency. It has been reported that scaling from
a medium-scale multiprocessor to a large-scale multiproces-
sor increases memory access latency by 60 percent. Switch-
ing/routing delays alone account for almost 40 percent of the
increased latency. Additional switching stages also result in
further slowing the clock, for example, even with a changed
coherence protocol, the system clock in the Fireplane
architecture from Sun Microsystems runs at a rate of
150 Mhz, where as the UltraSparc 3 processor is clocked over
750Mhz [2]. In addition, the effective delay on electrical lines
depends on temperature. For example, copper’s resistivity
changes by 40 percent over 100 degree centigrade. The rise
time on electrical lines typically is proportional to the
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resistance of the line (this applies to both RC and LC
transmission lines), and the signal delay on RC lines is
proportional to the resistance. Moreover, implementing
broadcast algorithms using electrical interconnects becomes
more complex and expensive as the number of processors
increases in the system. Therefore, by using current electrical
interconnect technology, it remains a big challenge to have a
large number of processors, and at the same time implement
fast broadcast snooping cache coherence protocols.

1.2 Optical Interconnects for Address Bandwidth
Limitation

One technology that can provide high communication
bandwidth, low latency, and scalability is optical intercon-
nection technology [9], [4], [5]. The recent advances in optical
interconnect devices and packaging techniques such as
multidimensional arrays of vertical cavity surface emitting
lasers (VCSELs), arrays of photodetectors (PDs), and wave-
guide optics [10] are making optical interconnects a serious
and potentially viable interconnect technology for parallel
computing. The data transmission rate of a VCSEL is
approximately 3-5Gb/s. An array of such VCSELs enables
address transmission with data rates in excess of 200-300Gb/ s
[11], [12], [10], [19]. This could satisfy the bandwidth
demands of future SMPs. Optical pulses can coexist on the
same optical line without interference if they are sufficiently
separated. Even though requests can be pipelined by
electrical interconnects, the rate at which requests from
successive processors can be pipelined using optical technol-
ogy is much greater and can be achieved without using any
expensive multiplexer/demultiplexer circuits. In addition,
the delay on optical signal or clock paths (fibers or
waveguides) is not strongly dependent on temperature as
in the case of electronics, and signal or clock edges do not
degrade substantially over the scale of a computer room. It is
likely possible to retain absolute timing accuracy in the
delivery of optical signals of 10-100 ps over several meters [4].
Moreover, optical interconnect-based systems are easily
scalable either by adding extra wavelengths or fiber channels
in order to incorporate additional processors. This paper
proposes an integrated solution to solve the address
bandwidth requirements of large, scalable SMPs and still
use fast snooping protocols to maintain cache coherence with
low-latency using optical technology. An address subnet-
work, called Optical Symmetric Multiprocessor Network
(SYMNET) using parallel optical interconnects, is proposed
with one-to-many communications. Parallel optical inter-
connects provide higher-bandwidth density product as
compared to serial interconnects which provide higher
bandwidth product. SYMNET not only uses passive optical
interconnects that increases the speed of the proposed
network, but also pipelines address requests at a much faster
rate than electronics. By using passive optical technology as
opposed to more complex optical switching networks, the
optical signal transfer in SYMNET is much faster since there is
no optical switching or conversion. This results in increasing
the address bandwidth for snooping and provides the
impetus to develop scalable SMPs with hundreds of
processors using optical interconnects, while using snooping
cache coherence schemes. However, the preservation of cache
coherence can no longer be maintained with the usual
snooping protocols. We have introduced a modified snoop-
ing coherence protocol, called Coherence in SYMNET
(COSYM), and verified its correctness using several transient
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states. SYMNET using the COSYM protocol is compared
against electrical bus-based systems using the MOESI
protocol with Splash-2 benchmarks [13].

1.3 Related Work

Optical bus-based multiprocessor systems using coincident
pulse technique provide optical solutions to the problems of
bus design in areas of address bus arbitration, device
addressing, and data transfer [14]. However, the problem of
cache coherence is not addressed. The photobus smart pixel
interconnection system for shared-memory multiprocessors
use optical buses for broadcasting the address requests, but
arbitration is implemented using electronic buses leading to
buffering of address requests at the smart pixel VLSI chip
[15]. The constraints of access arbitration is eliminated in
the U-bus [5] design for SMPs. U-bus extends the address
bandwidth, but a new coherence protocol must be designed
to maintain consistency across the caches. In the SPEED [16]
architecture, write requests are broadcast using the snoop-
ing protocol and read requests are unicast using the
directory protocol. The I-SPEED coherence protocol used
for this architecture implements a single owner for dirty
blocks to preserve the consistency of caches. Optical
networks discussed so far employ serial links to transmit
address requests and data responses between the source
and the destination using wavelength division multiplexing
(WDM) technology. The optical solutions so far have not
been able to integrate fast, pure-snooping cache coherence
protocols and improve the address bandwidth demands to
scale the architecture significantly.

2 SYMNET: ADDRESS SUBNETWORK

The proposed optical symmetric multiprocessor network,
SYMNET is shown in Fig. 1. Fig. la shows SYMNET
consisting of the processing elements/memory modules
and an interconnection network. The interconnection net-
work consists of two subnetworks: address and data
subnetworks. The address and data subnetworks are
separated, reducing the design complexity and enabling
the design of large scalable SMPs. Scalable data subnet-
works have been studied elsewhere [17], therefore this
paper focuses only on the address subnetwork. The address
subnetwork consists of two components, a transport part
capable of transmitting multiple address requests and a
control part which ensures collisionless transmission of
these address requests. The transport part in SYMNET is
implemented using bidirectional couplers/splitters and the
control part is implemented using an optical token. In what
follows, we describe the SYMNET address subnetwork and
then explain how the architecture is implemented.

The address subnetwork follows a two-level hierarchical
architecture design. The first level consists of grouping few
processors on the boards using intraboard interconnections
and the second level consists of interconnecting these
boards by using interboard interconnections. The inter-
board and intraboard interconnections are constructed
using bidirectional Y-splitter/coupler combination. Time
division multiple access (TDMA) protocol is used as a
control mechanism to achieve mutual exclusive access to
the transport part. Several TDMA protocols such as
preallocation-based protocols, reservation-based protocols
with preallocated reservation control, and token-based
TDMA protocols have been reported [18], [16]. In this
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Fig. 1. (a) The proposed optical Symmetrical Multiprocessor Network
(SYMNET) in which the processors are connected to two subnetworks:
address subnetwork and data subnetwork. (b) An overview of a single
board of SYMNET, which shows the interconnections for four
processors. The processors are connected to bidirectional Y-couplers
by optical waveguides/fibers.

paper, we consider an optical token-based TDMA protocol
with preallocation to prevent collision of address requests.

The basic building block of SYMNET address subnetwork
is shown in Fig. 1b. The address subnetwork is constructed
using bidirectional Y-couplers, which provides two-way
address transmission (see the inset in Fig. 1b). The upstream
Y-couplers are used for combining the address requests from
the processors. After reaching higher levels, this address
requestis rerouted through the downstream Y-splitters which
enables broadcasting of the address requests to all the
processors and memory modules. It should be noted that
the broadcasting allows a request to reach all processors and
memory at the same time. This is a very useful feature for the
cache coherence protocol design to be discussed later. The
optical token is generated by a high-powered (10mW) and
high-frequency (10Ghz) laser source. This optical signal is
split (50/50), such that one part of the signal (50 percent) is
received by the address port controller and the other part
(50 percent) is delayed by the delay element implemented
using a fiber of length 20cms. This could lead to significant
losses in the token ring. One way to avoid the effects of these
losses, is to regenerate the token signal for every board
(containing up to four processors). The optical token provides
a time reference for insertion of address requests into the
subnetwork by each individual processor. The optical token is
tapped by the processor, which triggers the electronic inter-
face to drive the address request. The token is delayed by
using a delay element, which provides sufficient time to drive
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the electronics and also ensures that the address requests from
successive processors are transmitted without collision.
These address requests move up the hierarchy and then are
retransmitted back to all processors and memory simulta-
neously. This ensures that different requests from different
processors are serialized in the global order of requests
needed to maintain memory consistency [1].

The optical clock and the token generator are synchro-
nized; thus, successive processors receive the token every
clock cycle. Asshown in Fig. 1b, in cycle 1 indicated by square
shape, the optical token is received by processor 1, which
transmits an address request. During cycle 2, when this
address from processor 1 is in propagation at the next level of
the address subnetwork, the token is received by processor 2,
which can transmit an address request. This is shown in the
shape of a diamond in Fig. 1b. In cycle 3, the address request
from processor 1 is being rerouted using the downward Y-
splitter and, at the same time, the address request from
processor 2 has moved up the address subnetwork. The
optical token is now received by processor 3, which can
transmit an address. In cycle 4, the address request from
processor 1 has reached all the processors, thereby the
address request is broadcast to all the processors simulta-
neously. Broadcasting the address request results in simulta-
neous reception of the request by all the processors/memory
modules enabling snooping of the same request, after which
appropriate coherence action is taken as dictated by the
snooping protocols. In cycle 5, the address request from
processor 2 has reached all the processors. At the same time,
processors snoop on the request of processor 1 received in
cycle 4. Similar to electrical implementations, cache access
priority is with address subnetwork controller rather than the
processor-side controller. The snoop response, if one exists
will be provided by only a single processor as is explained
later. This response will be broadcast in the next cycle, i.e.,
cycle 6 using the dedicated snoop line shown in Fig. 2a. In
addition, in cycle 6, processors receive the request from
processor 3, snoop on the request from processor 2, and
respond to this request in cycle 7. This process repeats in a
pipelined fashion, processors receive an address request,
snoop on the previously received request, and transmit the
snoop response in the next cycle. The snoop response for
processor 1is received in cycle 9, for processor 2 is received in
cycle 10, and so on. Depending on the snoop response, either
the memory or the owner of the block will respond with data.
The processor that requested the block, maintains a count
down timer to know the correct cycle in which it expects to
receive the snoop response.

2.1 SYMNET Implementation Details

The key component of SYMNET is the VCSEL/PD arrays
capable of transmitting at data rates in excess of 3Gb/s per
channel, which results in providing aggregate data rates of
several Gbps. High-performance GaAs and InGaAs-based
selectively oxidized or proton implanted top-emitting,
bottom-emitting VCSEL arrays emitting at 780nm to 980nm
have been widely reported in the literature [10], [19], [20], [12].
Optical polymers are increasingly considered as highly
versatile elements that can be readily transformed into
single-mode, multimode, and microoptical waveguide/fiber
structures as they exhibit excellent thermal stability, low
optical loss, mechanical robustness, and have demonstrated
capability in a variety of demanding applications. The low
loss in optical polymers [10] makes them an attractive
material for constructing the 2 x 1 couplers, 1 x 2 splitters,
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Fig. 2. A Functional block diagram of the processor, cache, cache
controller, address port controller, optical token ring, delay element,
VCSEL, and Photodetector arrays. (a) Functional block diagram
specifying the address port controller, VCSEL, and Photodetector
arrays. (b) Interboard interconnection between two adjacent processors
nandn + 1.

and for routing optical pulses from VCSELs to these
couplers/splitters in the SYMNET interconnection network.
Details of the optical components and their implementation
can be found in a separate publication [21].

The implementation details of SYMNET are shown in
Fig. 2. In Fig. 2a, on a cache-miss, the address request is
forwarded to the address port controller by the cache
controller. The optical token is generated by a high-
powered laser source. This optical signal is split, such that
one part of the signal is received by the address port
controller and the other part is delayed by the delay
element implemented using a fiber loop. When the token is
received, the address port controller forwards the address
request to the transmitter IC which drives the VCSEL
arrays. Optical interconnects based on complimentary-
metal-oxide-semiconductor CMOS/VCSEL technology
have been widely proposed for high-performance comput-
ing applications [12]. A similar, hybrid integration [20]
using flip-chip bonding of CMOS-VCSEL arrays is followed
in our design. The optical pulses emitted from the VCSEL
array propagate through integrated polymer 2 x 1 up-
stream couplers reach the root of the address subnetwork
and is transmitted back using 1 x 2 down-stream splitters.
The address bits encoded as light pulses are eventually
detected by the photodetector after amplification and is
returned back to the address port controller from the CMOS
receiver IC. The received address request is then forwarded
to the cache controller for processing the received address
request. Note that in Fig. 2a, in addition to the parallel
optical address bits, a snoop bit is also implemented for
snoop responses to be discussed later. In Fig. 2b, the
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interconnection between two successive processors n and
n+1 on a system board is shown. A more detailed
implementation of SYMNET can be found in a separate
publication [21].

3 CACHE COHERENCE IN SYMNET

Coherence in SYMNET, called COSYM, is modified from
the popular MOESI (Modified, Owned, Exclusive, Shared,
Invalid) [1] protocol. In SYMNET, an address request is
issued on a cache-miss. This request is inserted into the
address subnetwork when the optical token is received by
the processor. The address request traverses through
several Y-splitters and couplers, and then becomes wvisible
to all processors simultaneously. In SYMNET, there is a
fixed latency between the time when the address request is
inserted into the address subnetwork and when this request
becomes visible to all processors. This is in contrast to
electrical bus-based SMPs, where the address request
becomes visible immediately after the request is broadcast
on the bus [1]. Therefore, in electrical SMPs, the cache
controller is aware of all previous outstanding requests in
the system at the time of inserting the new request. In
SYMNET, when the token is received, the cache controller
inserts an address request into the address subnetwork. At
the time of inserting an address request, the cache controller
is unaware of other requests propagating through the
address subnetwork affecting the same cache block for
which the request is inserted. COSYM protocol handles all
race conditions that arises due to the simultaneous
propagation of multiple address requests using several
transient states. In what follows, we discuss the snoop
response requirement, the working of COSYM protocol,
and how write-backs are handled.

3.1 Design Space for Snooping Protocols

Implemented Optically

In the electrical networks, the snoop response is implemen-
ted using two wired-OR lines, shared and owned [1]. The
processors sharing the block assert the shared line if the
block is in the shared state or the owned line if the block is
in any of the following states: E, M, or O. The shared snoop
line could be asserted by more than one processor. In an
optically interconnected multiprocessor system, if more
than one pulse is inserted into the network as snoop
response by multiple processors, collision of snoop
responses from several processors result in erroneous
response being received by the requestor as they operate
at the same wavelength. Therefore, the constraint for the
snoop response in our architecture is that it should be a
single response from a single processor. To achieve this, we
maintain an owner for every cache block shared. The owner
is responsible for providing the snoop response. In case of a
dirty block, the owner is the most recent processor which
wrote to that block. In case of clean block, there could be
several processors sharing the block. In order to determine a
single owner, MOESI protocol is modified such that if a
read miss request is issued to an E block, the block is
upgraded to O, instead of S, and this makes the processor
which was initially in E state, the owner of the shared block.
This does not change any other protocol constraints. Reads
from the processor can still be satisfied and writes will still
require an invalidation transaction to be issued. In the
COSYM protocol, a single snoop response (HIGH or LOW)
signal can determine all the relevant information required
as follows:
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e Snoop High: Dirty block exists, memory need not
respond to the requestor, and if it was for a read
request, the block is loaded in S state.

e  Snoop Low: No dirty block exists, memory responds
with the data to the requestor, and if it was for a read
request, the block is loaded in E state.

3.2 Race Condition in Reporting Snoop Responses

The snoop response signal also traverses the address subnet-
work (see Fig. 2a) using the snoop line and the requesting
processor and the memory receive this response [6], [1]. This
simple strategy of responding with snoop results and
recording of it, can lead to race conditions when simultaneous
reads to the same block are issued by different processors. To
illustrate this point, let us assume that processors P1, P2, and
P3 share a block B and it is in E, I and I states in the three
caches, respectively. Processors P2 and P3 issue read miss
requests to the same block B and P2’s request becomes visible
before P3’s request. P2 becomes active after seeing its request.
When P3’s request becomes visible, there is a possibility that
P2 may respond with the snoop signal. The reason why P2
may respond is, by default, a read-miss block is destined to be
loaded in E state when the data is received. But, for this block,
the owner, P1, does exist. This may result in both P1 and P2
responding with snoop response signals resulting in a
potential race condition.

The solution for the race condition in reporting snoop
response signals is that the processor should monitor all
transactions after inserting a read-miss request and not
when the request becomes visible. Therefore, in the above
scenario, processor P3 should monitor transactions after
inserting a read-miss request. When P2’s read-miss request
becomes visible, processor P3 makes note of P2’s request by
changing state such that the block will be loaded to S state
upon data availability. Processor P2 should not respond to
P3’s request if its own snoop response is not received. At
the same time, P2 should change state such that, if there is
no snoop response, the block should be loaded in O state
when the data is received and become the owner for the
block. In the above example, P1 responds to P2’s request by
virtue of being in the E state and changes to O state. If there
is no owner, processor P2 loads the block in O state when
the data is available. For the write-miss case, race conditions
do not arise, as the processor waits only for the address
request to be serialized in the total order and not the snoop
response. Similarly, when a processor is waiting after
inserting a read-miss request, it does not respond to write
requests which appear before its own request. The reason
for that is the processor writing to the block becomes the
owner and the snoop response for the read-miss request
will be provided by the owner.

3.3 Verification Methodology for the Cache
Coherence Protocol

We should note that it is very hard to verify a coherence
protocol with many stable/transient states as it was
indicated in [22], [3]. In this paper, we attempt to provide
a brief description of the verification methodology. The
verification procedure for validating the coherence scheme
is the table/graphical approach [22], [1] describing all the
state transitions that occur when the processor issues new
requests or when requests from other processors become
visible. Our network is a completely ordered network,
thereby providing a basis for snooping protocols to be
implemented. The memory controller is also simplified with
no dirty bit being present for every block. A transaction,

1097

once inserted into the network, is assured to be completed
without the processor having to retry the transaction. The
responsibility of providing the snoop response rests solely
with the owner of the block in our protocol. In case of a
clean block, the owner is the cache which acquired the block
first from the memory.

COSYM: States and Events. The stable states in COSYM
have the same functionality as in the MOESI protocol [1].
Table 1 describes the transient states used in COSYM. This
representation is similar to the table-based method adopted
for verifying multicast protocol [22]. The active/inactive
status indicates whether the transient state reacts to
incoming address requests. The cache controller reacts to
two kinds of requests, issued either from the processor or
from the interconnect. The address requests issued by the
cache controller in SYMNET are read-miss, write-miss, and
upgrade/invalidation requests. The cache controllers make
transitions based on their current state and current events.
The events that cause the transitions are address request
being issued from the processor, the request being inserted
into the interconnect, the request becoming visible, receiv-
ing high/low snoop response for the request and, finally,
receiving the data. For the stable state transitions in
COSYM,, read hit occurs when the block is any stable state
except I state. Write hit occurs when the block is in either
the M state, or when the block is upgraded from the E state
to M state. When a read request is issued by another
processor to a block in the E state, the block is upgraded to
O state. All write requests from the interconnect will result
in the block being downgraded to I state from all the other
stable states.

COSYM Transient State Diagram. The transient
diagram of the COSYM protocol in case of a cache-miss
are shown in Fig. 3. The read-miss and write-miss cases
are combined in this figure due to strict page limitations.
The states indicated with gray shade imply that the
protocol is not reactive to requests yet. The white circles,
which are not bold, indicate the states in which the
protocol reacts to transactions. The text associated with
the arrow from one state to another transient state
indicates the event that caused the transition. The
transitions due to cache-miss requests issued from the
interconnect are shown with a dotted line. Each transient
state is indicated in the following manner [22]: < present
state> -< next state> -< abbreviation-"a/d/s”> . For example,
when a read miss occurs, the transient state is indicated
as: < Invalid-Exclusive (IE-ads)> . Invalid (I) indicates the
present state, the next state is Exclusive (E), and “ads”
stands for pending address, data and snoop response.
When the read-miss request is inserted, the cache is
reactive to other requests issued to the same block. When
the address request becomes visible, the state changes to
< Invalid-Exclusive (IE-ds)>, which indicates that the
data and the snoop signal are pending. The other state
reachable from IE-ads is IS-ads and IE-ds. IS-ads indicates
that the processor has seen a read-miss request issued by
another processor before its own request. When the
address request becomes visible, the transition takes place
to either IE-ds or IS-ds depending on the previous state.
If the block is in IE-ds and a read-miss request from
another processor is visible, the block transits to IO-ds.
All write-miss requests from the interconnect will result
in the block being downgraded to II-d state. When the
snoop signal is received, depending on whether it is high
or low, the next possible states are IE-d, IO-d, or IS-d.
Finally, when the data is received, the block makes the
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TABLE 1
Cache Controller Transient States
Transient | Status | Description
State
IE-ads inactive | invalid, issued read request, has not inserted the address request
into the network
IE-ads active invalid, inserted read request, yet to receive address, snoop
and data response
IE-ds active invalid, issued read request, received address, yet to receive snoop
and data response
1E-d active invalid, issued read request, received address and snoop response(low),
yet to receive data response
IS-ads inactive | invalid,issued read request, yet to receive address, data and snoop response
IS-ds active invalid, issued read request, received address, yet to receive snoop
and data response
IS-d active invalid, issued read request, received address and snoop response (high),
yet to receive data response
10-ds active | invalid, issued either read or write request, the next stable state is known
to be Owned, received address, yet to receive snoop and data response
10-d active | invalid, issued either read request or write request, the next stable state
is known to be Owned, received address and snoop response,
yet to receive data response
IM-ad inactive | invalid, issued or/and inserted write request, yet to receive address
and data response
IM-d active invalid, issued write request, received address, yet to receive data response
S/O,M-a | active owned/shared, issued write request, yet to receive the address request
II-d inactive | invalid, next state is known to be Invalid, yet to receive data response

transition to E, S, O, or I states depending on the
previous transient state.

In case of a write-miss, the block maybe in I, S, or O
states. If a write-miss occurs, the block transits to IM-ad,
indicating pending address and data. The snoop signal is
not relevant to the issuing processor as it only needs the
data to write to the block. The snoop signal is still provided
by the owner, if one exists, to the memory controller. Once
the write-miss request is visible, it is serialized in the global
order of requests and transits to IM-d which indicates that
the data is not received. Any intermediate read-request
causes the block to change to IO-d state. When the data is
received, depending upon the previous state, the block is
loaded in M, O, or I state. If a write-miss occurs and the
cache does have a valid block (O/S), it issues an invalida-
tion request and transits to O/SM-a state. The data is
already valid and the processor waits only for the
invalidation request to become visible. When the cache
block is in O/S,M-a state, if a write request is issued from
the interconnect, the block transits to IM-ad, which
indicates that both data and address are pending and the
controller reacts in a similar fashion as explained.

3.4 Write-Back Handling

The snoop response is always provided by the owner of the
block which, informs both the memory, whether to respond
or not and the requesting processor, whether to load the
block in S or E state in case of a read-miss request. When the
owned block itself is replaced, there are potential sharers in
the system. So, if a new request is issued, the caches sharing
the block will not respond, memory responds, and the
issuing processor loads the block erroneously in the E state.
Therefore, there is a need to transfer the ownership of the
block when the owned block is being replaced. The added

advantage is that by transferring the ownership, no data
transfer is required back to memory when a dirty block is
evicted with potential sharers in the system. This implies that
the memory will be updated only when there are no sharers in the
network. In order to perform the above requirement, each
cache block, in addition to tag, address bits, and cache state,
maintains the next sharer for the block [22]. The next sharer is
maintained only if the block is in either O or S state. If the
block is in E or M state, then it is the only cached, valid copy
in the system and there are no next sharers for the block.

To illustrate this point, let’s consider an example as
shown in Fig. 4. Let us assume that PO issues a read/write-
miss request to block B as shown in Fig. 4a. If it is a read-
miss request, this is the first processor issuing the request,
the block is loaded in the E state and the data is supplied by
the memory. If the request is a write-miss, the memory or
the owner of the block supplies the data and PO loads the
block in M state. As both these conditions make PO the first
processor to load the valid block, the notation used here is
PO(E/M). In Fig. 4b, P1 issues a read-miss request to block
B, PO provides the snoop high signal, supplies the data, sets
the next sharer to P1, changes the state of block B to O, and
is indicated as P0(O). P2 loads the block in S state, has no
next sharer, and is indicated as P1(S). In Fig. 4c, P2 issues a
read-miss request to block B, PO provides the snoop high
signal, supplies the data, but does not set the next sharer. P1
sets the next sharer for the block B to P2. P2 loads the block
in S state and has no next sharer. This continues, as new
requests arrive, the last processor sets the next sharer to be
the processor that requested the block. A write-back to S/O
block that transfers either the next sharer information or the
ownership for the block constitutes a transfer write-back.
We, therefore, define three types of write-backs: ordinary
write-back, transfer write-back Type 1, and transfer write-
back Type 2.
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Cache-miss transient block transitions based on events such as Address request insertion,

visibility, receiving snoop response and data for our address request

Read-miss Requests received from the Interconnect (Other Processor’s read request,

=~~~ indicates as IC: Read-Req)

Write-miss Requests received from the Interconnect (Other Processor’s write request,

indicated as IC: Write-Req

Fig. 3. COSYM cache coherence protocol described using state diagram for all the transient states when a cache miss occurs. The various events
that cause the transition are issuing of address requests, inserting address requests, visibility of address requests, and receiving snoop signals and
data. The transitions caused by address requests made by other processors are indicated IC: Read/Write Req in the above figure. The arrow from
one transient state to another indicates either the event that caused the transition or another processor’s request received from the interconnect.

Transfer Write-Back Type 1. When an owned block is
evicted from the cache, it transfers the ownership to the
next sharer of the block, refer to Fig. 4d. Here, the owner
processor PO transfers the ownership to processor P1. This
is implemented by obtaining the optical token and inserting
a transfer write-back type 1 request. This is acknowledged
by processor P1.

Transfer Write-Back Type 2. When a shared block is
evicted from the cache, then the cache transfers the next
sharer of the block to the previous sharer. This is
implemented by obtaining the token and inserting a transfer
write-back type 2 request. In Fig. 4e, P2 transfers the
information of no sharer to P1. This is acknowledged by
processor P1.
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Fig. 4. (a) PO issuing a read-miss/write-miss request for block B. If it is a
read-miss request, the data is supplied by memory and PO loads the
block in E state. If it is a write-miss request, the data is supplied by either
memory or some cache and PO loads the block in M state. As both these
conditions, makes PO the first processor to load the valid block, the
notation used here is PO(E/M). In (b), processor P1’s read-miss request
is satisfied by processor PO. Block B in PO transits to O, indicated as
P0O(O), supplies the data and sets P1 as the next sharer. P1 loads the
block in S state, indicated as P1(S). P1 issues a read-miss requst to
block B. In (c), P2 issue read-miss requests to the same block B. The
data/snoop response is provided by PO and P1 sets the next sharer as
P2. P2 loads the block in S state. In (d), Transfer write-back Type 1
(ownership transfer) is issued by PO. In (e), Transfer write-back Type 2
(next sharer transfer) is issued by P2 Type 2. In (f), P1 performs an
ordinary write-back. (g) and (h) show race conditions in COSYM
protocol. P2 issues a Transfer Write-back Type 2 request and P1 issues
a Transfer Write-back Type 2 request. PO’s write-back request
becomes visible before P1’s write-back request.

Ordinary Write-Back. When a modified block is evicted
from the cache, then the block is written back to the
memory. In Fig. 4f, Processor P1 writes the block back to
memory since there are no sharers for the block. This does
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not cause another transaction to be inserted into the address
subnetwork. The evicted block in maintained in the write-
back buffer, until the block is written back. Any inter-
mediate transaction for this block will be responded by the
controller since it is the owner for the block.

4 PERFORMANCE EVALUATION

4.1 Simulation Methodology and Architectural
Assumptions

We have chosen Limes (Linux Memory Simulator) [23], an
event-driven execution simulator to evaluate the perfor-
mance of SYMNET with electrical bus-based systems
considering realistic delays for address and data transac-
tions. Limes models a single-level cache and a blocking bus.
We have extended the simulator to implement a two-level
cache with a split transaction bus by merging or delaying
conflicting requests for the electrical system. We assume
that the data network and memory access are contention-
free to maximize the effects of the limited address bus
bandwidth. We compare SYMNET with the traditional
electrical bus-based SMPs implementing the MOESI proto-
col with a subset of Splash-2 suite benchmarks [13]. The
electrical SMP considered for comparison is similar in
design to the Gigaplane and StarFire models [6]. We do not
compare SYMNET which is a pure-snooping-based SMP
with the Fireplane [2] model for two reasons: 1) the
Fireplane architecture follows a hybrid coherence model
containing both the snooping and the directory-based
protocols and 2) the coherence protocol of the Fireplane
has not been published at this time.

Benchmarks. In this study, we use eight benchmarks,
which cover a spectrum of memory sharing and access
patterns from the SPLASH-2 suite [13], namely, FFT with
input data set 64K points; LU with 256 x 256, 16 x 16
block; Ocean with 130 x 130; Radix with 1M integers,
1,024 radix; Water-nsquared with 512 molecules; FMM
with 16K particles; Barnes-hut with 1K particles, and
Cholesky with tk16.0, to evaluate the performance of
COSYM and MOESI protocols. We varied the number of
processors from 2 to 32 to evaluate the performance of
SYMNET. Unfortunately, due to the complexities of full-
system simulation, we were unable to simulate for more
than 32 processors for some applications. However,
applications such as FFT, LU, Radix, Water, and Ocean
showed similar trends when simulated for 64 processors.

Processor/Cache Parameters. Each node of the simulated
network contains 1 Ghz processor and has two cache levels,
namely, L1 and L2. The L1 cache is a 16 KByte direct-mapped,
with 32 byte block size and a write-through policy. The
L2 cache is 64 KByte, 4-way set-associative with 32 byte block
size, and a write-back policy. Both the caches implement an
LRU replacement policy. The access time to L2 cache is four
cycles. The processor and the cache parameters are kept
constant while simulating both electrical and optical net-
works. All first-level cache read/write hits are assumed to
take one processor clock cycle (pcc). Throughout this
evaluation, we have considered processor clock cycles (pcc)
as the base time unit for all measurements.

Electrical Simulation Parameters. In electrical SMPs, the
address bandwidth is affected by several factors such as the
bus speed, coherence protocol, and the number of address
buses. In electrical bus-based SMPs [2], [6], [7], the
processor clock is always a fraction of the system clock
rate. For example, in the StarFire model, UltraSparc2 is
clocked at 250Mhz, whereas the system bus is clocked at
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83.3MHz [6]. This implies that the system clock is around
1/3rd processor clock. With a 1GHz simulated processor,
and an improved system clock, we assume that the system
clock runs at 1/6th the processor clock. In the Gigaplane [6]
architecture, it takes two cycles to broadcast a single
address request. With the above assumption, it takes
12pcc to broadcast a single address request in our simulated
address bus. This single address request per cycle (RPC) is
denoted in all results as (RPC =1). In the StarFire [6]
architecture, processors snoop up to two address requests
per cycle using four address buses. This case is simulated
where each processor receives two address requests per
cycle and is accomplished by reducing the number of cycles
required to broadcast an address request to 6pcc. This two
address requests per cycle is denoted in all results as
(RPC = 2). Data network is contention-free and is imple-
mented using a crossbar for both RPC =1 and RPC =2
cases. The number of cycles required for data transfer is
fixed at two electrical network cycles irrespective of
whether the memory or some cache responds as in StarFire
[6] design. This results in 24pcc for data transfer in our
simulated network for both RPC = 1 and RPC = 2 cases.
Optical Simulation Parameters. In SYMNET, the optical
token is implemented such that the optical signal, generated
by a laser source, is split as shown in Fig. 2a. One part of the
optical signal is detected by the address port controller and
the other part is delayed at the delay element implemented
using a fiber loop. In order to calculate the time lag between
two successive processors inserting address requests into
the interconnect so that the address requests do not collide,
we evaluate the value of D, i.e., the delay induced by the
delay element. This delay should account for the distance of
propagation of the signal from the delay element to the next
processor n + 1, detection of the signal by the photodetec-
tor, and the rise time of address pulses driven by VCSEL
arrays at processor n. The delay D, can be determined as:

Sy b

D_UC+O“+G"+m.Vd’ (1)
where 8, is the distance of separation between the delay
elementatprocessor nand the detector at processorn + 1, v.is
the velocity of light in fibers, O, is the latency of opto-
electronic conversion, G is the gate delay faced by the token at
the address port controller, m is the number of parallel links, b
is the number of address bits (including one bit for snoop
response), and V;is the VCSEL datarate. O-E conversion takes
place when the optical signal is detected by the address port
controller and E-O conversion takes place when the address
bits encoded as optical pulses are driven by the VCSEL array.
Itisassumed thatasingle gate delayisseen by theaddress port
controller when it receives the token. If the delay element at
the processor n is close to the the detector at processor n + 1,
we can approximate this distance tobe 2 — 5¢ms. The velocity
of light in fiber/waveguide is v, = 2 x 10®. The O-E conver-
sion depends on the data rate of the photodetector. Current
high data rate pin photodetectors are available at 3 — 5Gbps,
this value can be estimated to be O, = 200psec. VCSELs are
commercially available in the region of 3 — 5Gbps and with
m = b, D can be estimated to be 0.8nsec. The optical token
should be seen by the next processor with a delay greater than
0.8nsectoprevent collision of address requests. Therefore, the
other part of the optical signal at the delay element should be
delayed by more than 0.8nsec. Considering an expected delay
skew in the region of 0.1nsec, we consider that the delay D
should be 1nsec. Considering 1nsec as the required delay, we
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can estimate the length of the delay element to be 20cm
(= (2 x 10%) x 1nsec). The delay element is implemented by
usingafiberloop 20cms inlength. Therefore, the time taken by
each processor to insert its address request is estimated to be
Insec or 1pcc.

The delay encountered by an address transaction to be
visible is equivalent to the number of stages in the address
subnetwork. This is assumed to be twice the logarithm of
the number of processors connected in the address subnet-
work. The snoop response also takes similar number of
cycles after the address is snooped. The data network
considered for SYMNET is the SOCN [17] network. SOCN
is an optical crossbar constructed using VCSEL/PD arrays
and diffraction grating. The data subnetwork for SYMNET
is also assumed to be conflict-free. The simulated cycles to
transfer the data in SYMNET varies and this depends on
current optical devices. While conflict in wavelength
allocation can cause additional delays [17], for simplicity,
we assume that the number of wavelengths available is
equal to the number of processors simulated. The delay in
data transfer for the optical network depends on the data
rate of current multiwavelength VCSEL arrays. At 5 Gbps
VCSEL data rate, to transmit 32 byte block, it takes around
52nsec (= (32 x 8)/(5 x 10%)) and this corresponds to 52pce.

4.2 Simulation Results

We determined the execution time, the average delay for
cache miss transaction, and the average delay for write-back
transaction for SYMNET and the electrical bus-based SMP
varying from 2 to 32 processors. We also measured the
percentages of different types of write-backs and the effects
of these write-backs on the address bandwidth in SYMNET.
Normalized Execution Time. Fig. 5 shows the normalized
execution time for varying number of processors for different
applications. Normalized execution time is calculated by
considering the maximum number of simulated cycles for a
given application and given number of processors. The
remaining two cases for a given number of processors, are
normalized to this maximum value. For FFT, COSYM shows
25 percent improvement over MOESI protocol for RPC =1
and 8 percent improvement for RPC =2 running for
32 processors. For the LU application, the improvement in
execution time is around 30-35 percent for both the cases. The
best improvement is visible for Ocean application, where the
improvement is more than 62 percent for RPC = 1 and over
52 percent for RPC =2 running for 32 processors. The
improvement in performance for Radix is 38 percent for
RPC =1 for 32 processors. Cholesky and Water-nsquared
applications show lower improvement in performance for
COSYM protocol, with Cholesky showing an improvement of
5 percent for RPC = 1 and Water shows an improvement of
16-19 percent for both cases. COSYM protocol improves
execution time by 20 percent and 15 percent for Barnes-Hut
and FMM applications for 32 processors, respectively.
Normalized Average Latency. Fig. 6 shows the normal-
ized average delay for a transaction to be completed for
both the electrical and the optical case. The delay in
completing a transaction was calculated from the time the
cache miss request was received by the L2 cache to the time
the data was received by the L2 cache for each processor.
The ratio of the total number of transactions to the total time
consumed for all processors was used to determine the
average delay. This delay was then normalized by con-
sidering the maximum average delay for a given applica-
tion and then dividing all the remaining cases with this
value. The average delay was much higher for the electrical
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Fig. 5. Normalized Execution time for processors varying from 2 to 32 for
all Splash-2 benchmarks. The execution time for the electrical bus
implementing the MOESI protocol with a single address request per
cycle (RPC = 1), two address requests per cycle (RPC = 2), and the
SYMNET address subnetwork implementing COSYM protocol is shown.
Normalized execution time is calculated by considering the maximum
number of simulated cycles for a given application and given number of
processors. The remaining two cases, for a given number of processors,
are normalized to this maximum value.

case for all applications which increased linearly with the
number of processors. The delay for the single address
request per cycle case was higher than the two address
requests per cycle case as expected. Most applications
showed lower delay for MOESI protocol for smaller
configurations. As the number of processors increased,
COSYM outperformed both electrical cases. This is directly
attributed to the saturation of the electrical bus, as the
number of processors increases in the interconnect, the
delay to acquire the bus also increases, thereby increasing
the latency for a transaction to complete. The COSYM
model with a faster address interconnect and a data
crossbar provides much better performance for all the
cases. The reduction in latency for FFT using the COSYM
protocol is as high as 76 percent for RPC = 1 and 57 percent
for RPC = 2. For LU, the reduction in latency for COSYM
protocol ranged from 51 percent for RPC = 1 to 25 percent
for RPC = 2. Barnes-Hut and FMM showed slightly better
performance for RPC = 2 condition than COSYM protocol.
COSYM still outperformed Barnes-Hut and FMM for
RPC = 1 condition by as much as 40 percent and 85 percent,
respectively.

Normalized Average Write-Back Time. Fig. 7a shows the
average time taken to complete write-back transactions for
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Fig. 6. Normalized Average latency of a transaction for processors
varying from 2 to 32 for all Splash-2 benchmarks. The average latency
for the electrical bus implementing the MOESI protocol with a single
address request per cycle (RPC = 1), two address requests per cycle
(RPC =2), and the SYMNET address subnetwork implementing
COSYM protocol is shown. Normalized average latency is calculated
by considering the maximum value of average latency for a given
application and dividing all the remaining cases with the maximum value.

COSYM and MOESI protocols. The electrical cases using the
MOESI protocol for both the conditions showed lower write-
back time than COSYM protocol. This is attributed to the
number of cycles required to perform the write-back, since
electrically, it takes 24 clock cycles as compared to 52 cycles
required for the COSYM protocol. The assumption that data
transferin SYMNET takes 52 cyclesis based on current optical
device technology and is expected to improve in the future.

Percentages of Transfer and Ordinary Write-Backs.
Fig. 7b shows the transfer write-back type 1, transfer write-
back type 2, and ordinary write-backs as a percentage of the
total number of write-backs for COSYM protocol for different
applications. As the number of processors increases, percen-
tage of transfer write-backs also increases. All applications
other than LU and radix have transfer write-backs lesser than
20 percent of all write-backs. For 32 processors, for Radix
application, the transfer write-backjumps to almost40 percent
of the total number of write-backs. The Ocean application
shows a low number of transfer write-backs for all the cases.
For Ocean, this is approximately 8-10 percent of all write-
backs for 32 processors. As more processors are connected in
theinterconnect, the ownership of the dirty block is more often
transferred between processors than writing it back to
memory every now and then.
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Fig. 7. (a) shows the normalized average write-back time required for 32
for the Splash-2 benchmarks. Normalized average write-back time is
calculated by considering the maximum value of average write-back
time for a given application and dividing all the remaining cases with the
maximum value. (b) shows the percentages of different types of write-
backs occurring in COSYM protocol for 32 processors. (c) shows the
percentages of all types of transactions inserted into the address
subnetwork for 32 processors. Note that the ordinary write-backs use
the data subnetwork and are not plotted here. The reissued transactions
are insignificantly less as compared to other transactions and, therefore,
are not visible in the figure.

[ Read-miss [ Write-miss

Effects of Transfer Write-Backs on Address Bandwidth.
Fig. 7c shows the percentages of all types of transactions
inserted into the address subnetwork. It should be noted that
ordinary write-back transactions are not inserted into the
address subnetwork as they are written back using the data
subnetwork. The dominant requests propagating through the
address subnetwork are read and write misses for all
applications. All applications, except Barnes-hut, have
transfer write-backs less than 10-15 percent of all transactions
inserted into the address subnetwork. The reissued write-
back transactions are insignificantly less as compared to other
transactions and therefore, are not visible in Fig. 7c.

There are four distinct differences in implementing the
write-backs in the COSYM protocol, as compared to electrical
MOESI protocol. First, the E block is upgraded to O state
when a read-miss is issued by another processor. The
drawback of this is, if the processor needs to write-back this
block in O state, and if there are no sharers, then this clean
block is unnecessarily written back to memory. Second,
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COSYM stores the next sharer information for every shared
block and this sharing information is transferred by issuing
transfer write-back Type 1 and Type 2 transactions. Third, an
overhead in the COSYM protocol is the transfer write-back
Type 2 transaction, where even a shared block evicted from
the cache needs to inform the previous processor of the
change in the next sharer. Fourth, a write-back transaction
may be reissued if a transfer write-back Type 1 or 2 is not
completed due to race conditions as discussed before.

The first difference can be resolved by adding another
stable state to COSYM, such that the block transits from E to
this new state, rather than to the O state, and becomes the
owner of the block. If a write-back is issued to this new state
and if there are no sharers, then the block can be evicted
without writing it back to memory. The second and the
third differences are related to the snoop response require-
ments. The concept of maintaining the next sharer has been
previously introduced in multicast protocol [22]. Transfer
write-back Type 2 is an overhead and may increase with the
number of processors. Techniques such as speculating the
next sharer or random choosing a processor as the next
sharer are currently being studied to reduce the number of
Transfer write-back Type 2. For the fourth difference, our
simulation studies for various applications and varying
processors have shown that reissuing of transactions is
negligible compared to the total number of transfer write-
backs that take place. For all applications the number of
reissued transactions is less than 0.01 percent of the total
number of requests inserted into the address subnetwork.
Therefore, the race conditions, which cause the write-back
request to be reinserted, occur for a very small percentage of
write-backs.

5 CONCLUSION

In this paper, we addressed the primary limitation of address
bandwidth in SMPs. As a solution, we propose a parallel
optical interconnect-based Symmetric Multiprocessor Net-
work (SYMNET) and a modified cache coherence protocol
called COSYM. SYMNET improves execution time and
reduces the latency by pipelining multiple address requests
from different processors simultaneously. Using the modified
Limes simulator, we simulated SYMNET implementing the
COSYM protocol and compared it with the electrical bus-
based MOESI protocol using Splash-2 benchmarks from 2 to
32 processors. Our simulation studies have shown a 5 to
66 percent improvement in execution time for COSYM as
compared to MOESI for various applications. Simulations
have also shown that the average latency for a transaction to
complete using COSYM protocol was 5 to 78 percent better
than the MOESI protocol. Our objective to implement the
snoop response signals optically resulted in handling write-
backs differently with ownership transfer. The improvement
in latency for an address transaction offsets the write-back
latency, resulting in better performance for the COSYM
protocol as our simulation studies have shown. The simula-
tion results provide encouragement that SYMNET has the
potential to match the bandwidth needs of future SMPs.
Parallel optical interconnects and integrated waveguide
technology makes SYMNET a viable solution for SMPs with
significant performance advantages over traditional electro-
nics. Greater improvements in terms of bandwidth, latency,
and scalability can be expected with further improvement in
optical device technology.
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